Graded rings and Krull orders
HTML articles powered by AMS MathViewer
- by Eric Jespers and Paul Wauters
- Proc. Amer. Math. Soc. 107 (1989), 309-313
- DOI: https://doi.org/10.1090/S0002-9939-1989-0955461-1
- PDF | Request permission
Abstract:
Let $R$ be a faithfully $S$-graded ring, where $S$ is a submoniod of a torsion-free commutative group and $S$ has no nontrivial units. In case $R$ is a prime Krull order we give necessary and sufficient conditions for $R$ to be a crossed product (respectively a polynomial ring).References
- David F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979), no. 1, 79–106. MR 514866, DOI 10.1080/00927877908822334
- D. D. Anderson and David F. Anderson, Divisibility properties of graded domains, Canadian J. Math. 34 (1982), no. 1, 196–215. MR 650859, DOI 10.4153/CJM-1982-013-3
- Marc Chamarie, Anneaux de Krull non commutatifs, J. Algebra 72 (1981), no. 1, 210–222 (French). MR 634623, DOI 10.1016/0021-8693(81)90318-5 —, Anneaux de Krull non-commutatifs, Thèse, Université Claude-Bernard (Lyon), 1981.
- Leo G. Chouinard II, Krull semigroups and divisor class groups, Canadian J. Math. 33 (1981), no. 6, 1459–1468. MR 645239, DOI 10.4153/CJM-1981-112-x
- M. Cohen and S. Montgomery, Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc. 282 (1984), no. 1, 237–258. MR 728711, DOI 10.1090/S0002-9947-1984-0728711-4
- Robert Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1984. MR 741678
- Eric Jespers, On radicals of graded rings and applications to semigroup rings, Comm. Algebra 13 (1985), no. 11, 2457–2472. MR 807485, DOI 10.1080/00927878508823284
- Eric Jespers and Paul Wauters, A general notion of noncommutative Krull rings, J. Algebra 112 (1988), no. 2, 388–415. MR 926613, DOI 10.1016/0021-8693(88)90098-1
- Hidetoshi Marubayashi, Polynomial rings over Krull orders in simple Artinian rings, Hokkaido Math. J. 9 (1980), no. 1, 63–78. MR 563187, DOI 10.14492/hokmj/1381758228
- C. Năstăsescu, E. Nauwelaerts, and F. Van Oystaeyen, Arithmetically graded rings revisited, Comm. Algebra 14 (1986), no. 10, 1991–2017. MR 864568, DOI 10.1080/00927878608823407
- P. Wauters, $\Omega$-Krull rings and Gr-$\Omega$-Krull rings in the non-P.I. case, J. Pure Appl. Algebra 32 (1984), no. 1, 95–113. MR 739641, DOI 10.1016/0022-4049(84)90017-3
- P. Wauters, Factorial domains and graded rings, Comm. Algebra 17 (1989), no. 4, 827–836. MR 990980, DOI 10.1080/00927878908823761
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 309-313
- MSC: Primary 16A03; Secondary 16A34
- DOI: https://doi.org/10.1090/S0002-9939-1989-0955461-1
- MathSciNet review: 955461