Graphs with parallel mean curvature
Author:
Isabel Maria da Costa Salavessa
Journal:
Proc. Amer. Math. Soc. 107 (1989), 449-458
MSC:
Primary 53C40; Secondary 53C42
DOI:
https://doi.org/10.1090/S0002-9939-1989-0965247-X
MathSciNet review:
965247
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that if the graph of a map
between Riemannian manifolds is a submanifold of
with parallel mean curvature
, then on a compact domain
,
is bounded from above by
. In particular,
is minimal provided
is compact, or noncompact with zero Cheeger constant. Moreover, if
is the
-hyperbolic space--thus with nonzero Cheeger constant--then there exist real-valued functions the graphs of which are nonminimal submanifolds of
with parallel mean curvature.
- [1] Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- [2] Shiing-shen Chern, On the curvatures of a piece of hypersurface in euclidean space, Abh. Math. Sem. Univ. Hamburg 29 (1965), 77–91. MR 188949, https://doi.org/10.1007/BF02996311
- [3] James Eells, Minimal graphs, Manuscripta Math. 28 (1979), no. 1-3, 101–108. MR 535698, https://doi.org/10.1007/BF01647968
- [4] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. MR 495450, https://doi.org/10.1112/blms/10.1.1
- [5] Harley Flanders, Remark on mean curvature, J. London Math. Soc. 41 (1966), 364–366. MR 193600, https://doi.org/10.1112/jlms/s1-41.1.364
- [6] Matthew P. Gaffney, A special Stokes’s theorem for complete Riemannian manifolds, Ann. of Math. (2) 60 (1954), 140–145. MR 62490, https://doi.org/10.2307/1969703
- [7] Erhard Heinz, Über Flächen mit eineindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind, Math. Ann. 129 (1955), 451–454 (German). MR 71822, https://doi.org/10.1007/BF01362385
- [8] I. M. C. Salavessa, Graphs with parallel mean curvature and a variational problem in conformal geometry, Ph.D. Thesis, University of Warwick, 1988.
- [9] Shing Tung Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 417452, https://doi.org/10.1512/iumj.1976.25.25051
- [10] Shing Tung Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 487–507. MR 397619
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40, 53C42
Retrieve articles in all journals with MSC: 53C40, 53C42
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0965247-X
Article copyright:
© Copyright 1989
American Mathematical Society