Graphs with parallel mean curvature
HTML articles powered by AMS MathViewer
- by Isabel Maria da Costa Salavessa
- Proc. Amer. Math. Soc. 107 (1989), 449-458
- DOI: https://doi.org/10.1090/S0002-9939-1989-0965247-X
- PDF | Request permission
Abstract:
We prove that if the graph ${\Gamma _f} = \left \{ {\left ( {x,f\left ( x \right )} \right ):x \in M} \right \}$ of a map $f:\left ( {M,g} \right ) \to \left ( {N,h} \right )$ between Riemannian manifolds is a submanifold of $\left ( {M \times N,g \times h} \right )$ with parallel mean curvature $H$, then on a compact domain $D \subset M$, $\left \| H \right \|$ is bounded from above by $\frac {1}{m}\frac {{A\left ( {\partial D} \right )}}{{V\left ( D \right )}}$. In particular, ${\Gamma _f}$ is minimal provided $M$ is compact, or noncompact with zero Cheeger constant. Moreover, if $M$ is the $m$-hyperbolic space—thus with nonzero Cheeger constant—then there exist real-valued functions the graphs of which are nonminimal submanifolds of $M \times \mathbb {R}$ with parallel mean curvature.References
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Shiing-shen Chern, On the curvatures of a piece of hypersurface in euclidean space, Abh. Math. Sem. Univ. Hamburg 29 (1965), 77–91. MR 188949, DOI 10.1007/BF02996311
- James Eells, Minimal graphs, Manuscripta Math. 28 (1979), no. 1-3, 101–108. MR 535698, DOI 10.1007/BF01647968
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. MR 495450, DOI 10.1112/blms/10.1.1
- Harley Flanders, Remark on mean curvature, J. London Math. Soc. 41 (1966), 364–366. MR 193600, DOI 10.1112/jlms/s1-41.1.364
- Matthew P. Gaffney, A special Stokes’s theorem for complete Riemannian manifolds, Ann. of Math. (2) 60 (1954), 140–145. MR 62490, DOI 10.2307/1969703
- Erhard Heinz, Über Flächen mit eineindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind, Math. Ann. 129 (1955), 451–454 (German). MR 71822, DOI 10.1007/BF01362385 I. M. C. Salavessa, Graphs with parallel mean curvature and a variational problem in conformal geometry, Ph.D. Thesis, University of Warwick, 1988.
- Shing Tung Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 417452, DOI 10.1512/iumj.1976.25.25051
- Shing Tung Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 487–507. MR 397619, DOI 10.24033/asens.1299
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 449-458
- MSC: Primary 53C40; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-1989-0965247-X
- MathSciNet review: 965247