The Henselian defect for valued function fields
Author:
Jack Ohm
Journal:
Proc. Amer. Math. Soc. 107 (1989), 299-308
MSC:
Primary 12F20; Secondary 12J10
DOI:
https://doi.org/10.1090/S0002-9939-1989-0975654-7
MathSciNet review:
975654
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The notion of defect for finite algebraic extensions of valued fields is classical and due to Ostrowski. Recently Matignon has generalized Ostrowski's definition to rk 1 (residually transcendental) valued function fields and used it to prove a very sharp version of the genus reduction inequality for function fields. The further generalization of the notion of defect to valued function fields of arbitrary rk is treated here.
- [1] James Ax, A metamathematical approach to some problems in number theory, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N. Y., 1969) Amer. Math. Soc., Providence, R. I., 1971, pp. 161–190. MR 0316419
- [2] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961
- [3] N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles, No. 1308, Hermann, Paris, 1964 (French). MR 0194450
- [4] Otto Endler, Valuation theory, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971); Universitext. MR 0357379
- [5] Hans Grauert and Reinhold Remmert, Über die Methode der diskret bewerteten Ringe in der nicht-archimedischen Analysis, Invent. Math. 2 (1966), 87–133 (German). MR 206039, https://doi.org/10.1007/BF01404548
- [6] B. Green and F. Pop, Remarks on good reduction in valued function fields, preliminary manuscript, Heidelberg, January 1988.
- [7] Laurent Gruson, Fibrés vectoriels sur un polydisque ultramétrique, Ann. Sci. École Norm. Sup. (4) 1 (1968), 45–89 (French). MR 229654
- [8] F.-V. Kuhlmann, Ordinary defect, Matignon's defect and other notions of a defect for finite extensions of valued fields and a special class of valued algebraic function fields, preliminary manuscript, Heidelberg, April 22, 1988.
- [9] Serge Lang, Introduction to algebraic geometry, Interscience Publishers, Inc., New York-London, 1958. MR 0100591
- [10] Michel Matignon, Genre et genre résiduel des corps de fonctions valués, Manuscripta Math. 58 (1987), no. 1-2, 179–214 (French, with English summary). MR 884992, https://doi.org/10.1007/BF01169090
- [11] -, Genre et genre résiduel des corps de fonctions valués (pour des valuations de rk arbitraire), preliminary manuscript, Bordeaux, May 3, 1988.
- [12] Michel Matignon and Jack Ohm, A structure theorem for simple transcendental extensions of valued fields, Proc. Amer. Math. Soc. 104 (1988), no. 2, 392–402. MR 962804, https://doi.org/10.1090/S0002-9939-1988-0962804-0
- [13] Michel Matignon and Jack Ohm, Simple transcendental extensions of valued fields. III. The uniqueness property, J. Math. Kyoto Univ. 30 (1990), no. 2, 347–365. MR 1068796, https://doi.org/10.1215/kjm/1250520076
- [14] Jack Ohm, Simple transcendental extensions of valued fields, J. Math. Kyoto Univ. 22 (1982/83), no. 2, 201–221. MR 666971, https://doi.org/10.1215/kjm/1250521810
- [15] Jack Ohm, Simple transcendental extensions of valued fields. II. A fundamental inequality, J. Math. Kyoto Univ. 25 (1985), no. 3, 583–596. MR 807499, https://doi.org/10.1215/kjm/1250521073
- [16] Alexander Ostrowski, Untersuchungen zur arthmetischen Theorie der Körper, Math. Z. 39 (1935), no. 1, 269–320 (German). MR 1545505, https://doi.org/10.1007/BF01201361
- [17] Peter Roquette, On the prolongation of valuations, Trans. Amer. Math. Soc. 88 (1958), 42–56. MR 100589, https://doi.org/10.1090/S0002-9947-1958-0100589-6
- [18] André Weil, Foundations of algebraic geometry, American Mathematical Society, Providence, R.I., 1962. MR 0144898
- [19] Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
- [20 -, Commutative algebra, Vol] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F20, 12J10
Retrieve articles in all journals with MSC: 12F20, 12J10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0975654-7
Keywords:
Valued function field,
defect
Article copyright:
© Copyright 1989
American Mathematical Society