On Picard's theorem for entire quasiregular mappings
Author:
Matti Vuorinen
Journal:
Proc. Amer. Math. Soc. 107 (1989), 383-394
MSC:
Primary 30C60; Secondary 30D40
DOI:
https://doi.org/10.1090/S0002-9939-1989-0975662-6
MathSciNet review:
975662
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Several refinements of Picard's theorem for entire functions in the complex plane have been proved by many authors in connection with the theory of Picard sets. We prove a result of this type for entire quasiregular mappings in euclidean -space in the case when the "Picard set" consists of a sequence
on a ray emanating from 0 with
.
- [C] Lennart Carleson, A remark on Picard’s theorem, Bull. Amer. Math. Soc. 67 (1961), 142–144. MR 130377, https://doi.org/10.1090/S0002-9904-1961-10541-7
- [GP] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, https://doi.org/10.1007/BF02786713
- [L] Olli Lehto, A generalization of Picard’s theorem, Ark. Mat. 3 (1958), 495–500. MR 105499, https://doi.org/10.1007/BF02589510
- [LV] Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, https://doi.org/10.1007/BF02392392
- [MRV1] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 448 (1969), 40. MR 0259114
- [MRV2] O. Martio, S. Rickman, and J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 465 (1970), 13. MR 0267093
- [MRV3] O. Martio, S. Rickman, and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 488 (1971), 31. MR 299782
- [M1] Kikuji Matsumoto, Some notes on exceptional values of meromorphic functions, Nagoya Math. J. 22 (1963), 189–201. MR 168767
- [M2] Kikuji Matsumoto, Some remarks on Picard sets, Ann. Acad. Sci. Fenn. Ser. A I No. 403 (1967), 17. MR 0224823
- [R] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, “Nauka” Sibirsk. Otdel., Novosibirsk, 1982 (Russian). MR 665590
- [Ri1] Seppo Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100–117. MR 583633, https://doi.org/10.1007/BF02797681
- [Ri2] Seppo Rickman, Value distribution of quasiregular mappings, Value distribution theory (Joensuu, 1981) Lecture Notes in Math., vol. 981, Springer, Berlin, 1983, pp. 220–245. MR 699136, https://doi.org/10.1007/BFb0066386
- [Ri3] Seppo Rickman, Quasiregular mappings and metrics on the 𝑛-sphere with punctures, Comment. Math. Helv. 59 (1984), no. 1, 136–148. MR 743947, https://doi.org/10.1007/BF02566341
- [S] James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, https://doi.org/10.1007/BF02391014
- [T1] Sakari Toppila, Picards sets for meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I No. 417 (1967), 24. MR 0227419
- [T2] Sakari Toppila, Some remarks on the value distribution of entire functions, Ann. Acad. Sci. Fenn. Ser. A I No. 421 (1968), 11. MR 0227415
- [T3] Sakari Toppila, Some remarks on the value distribution of meromorphic functions, Ark. Mat. 9 (1971), 1–9. MR 374433, https://doi.org/10.1007/BF02383633
- [T4] Sakari Toppila, Picard sets for meromorphic functions with a deficient value, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 2, 263–300. MR 613017, https://doi.org/10.5186/aasfm.1980.0528
- [T5] Sakari Toppila, On the value distribution of meromorphic functions with a deficient value, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 179–184. MR 595189, https://doi.org/10.5186/aasfm.1980.0527
- [V1]
J. Väisälä, Lectures on
-dimensional quasiconformal mappings. Lecture Notes in Math., 229, Springer-Verlag, New York, 1971.
- [V2] Jussi Väisälä, Modulus and capacity inequalities for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 509 (1972), 14. MR 310240
- [V3]
-, A survey of quasiregular mappings in
. Proc. 1978 Internat. Congr. Math. (Helsinki, Finland), Academia Scientiarum Fennica, Helsinki, 1980.
- [Vu1] Matti Vuorinen, On the Harnack constant and the boundary behavior of Harnack functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), no. 2, 259–277. MR 686644, https://doi.org/10.5186/aasfm.1982.0732
- [Vu2] Matti Vuorinen, Conformal invariants and quasiregular mappings, J. Analyse Math. 45 (1985), 69–115. MR 833408, https://doi.org/10.1007/BF02792546
- [Vu3] Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174
- [W1] Jörg Winkler, Zur Existenz ganzer Funktionen bei vorgegebener Menge der Nullstellen und Einsstellen, Math. Z. 168 (1979), no. 1, 77–85 (German). MR 542185, https://doi.org/10.1007/BF01214437
- [W2] Jörg Winkler, On the existence of meromorphic functions with prescribed zeros, ones and poles, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 563–572. MR 802521, https://doi.org/10.5186/aasfm.1985.1063
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C60, 30D40
Retrieve articles in all journals with MSC: 30C60, 30D40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0975662-6
Article copyright:
© Copyright 1989
American Mathematical Society