On dual spaces with bounded sequences without weak$^ *$-convergent convex blocks
HTML articles powered by AMS MathViewer
- by Thomas Schlumprecht
- Proc. Amer. Math. Soc. 107 (1989), 395-408
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979052-1
- PDF | Request permission
Abstract:
In this work we show that if ${X^ * }$ contains bounded sequences without weak* convergent convex blocks, then it contains an isometric copy of ${L_1}\left ( {{{\left \{ {0,1} \right \}}^{{\omega _1}}}} \right )$.References
- S. A. Argyros, J. Bourgain and T. Zachariades, A result on the isomorphic embeddability of ${l_1}\left ( \Gamma \right )$, Stud. Math. 78 (1984), 77-92.
J. Bourgain, La propiété de Radon-Nikodym, Publication des Math. de’l Université Pierre et Marie Currie, 36 (1979).
- Jean Bourgain and Joe Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58. MR 774176, DOI 10.1002/mana.19841190105
- L. Drewnowski and G. Emmanuele, On Banach spaces with the Gel′fand-Phillips property. II, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391 (1990). MR 1053378, DOI 10.1007/BF02850021 D. Fremlin, Consequences of Martin’s axiom, Cambridge University Press, 1985.
- J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), no. 4, 325–330. MR 482086, DOI 10.1007/BF02760638
- Richard Haydon, An unconditional result about Grothendieck spaces, Proc. Amer. Math. Soc. 100 (1987), no. 3, 511–516. MR 891155, DOI 10.1090/S0002-9939-1987-0891155-7
- Richard Haydon, Mireille Levy, and Edward Odell, On sequences without weak$^\ast$ convergent convex block subsequences, Proc. Amer. Math. Soc. 100 (1987), no. 1, 94–98. MR 883407, DOI 10.1090/S0002-9939-1987-0883407-1
- E. Odell, Applications of Ramsey theorems to Banach space theory, Notes in Banach spaces, Univ. Texas Press, Austin, Tex., 1980, pp. 379–404. MR 606226
- A. Pełczyński, On Banach spaces containing $L_{1}(\mu )$, Studia Math. 30 (1968), 231–246. MR 232195, DOI 10.4064/sm-30-2-231-246 H. P. Rosenthal, On the structure of weak*-compact subsets of a dual Banach space, in preparation. Th. Schlumprecht, Limited sets in Banach spaces, Dissertation, München, 1987.
- Michel Talagrand, Un nouveau ${\cal C}(K)$ qui possède la propriété de Grothendieck, Israel J. Math. 37 (1980), no. 1-2, 181–191 (French, with English summary). MR 599313, DOI 10.1007/BF02762879
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 395-408
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979052-1
- MathSciNet review: 979052