On dual spaces with bounded sequences without weak$^ *$convergent convex blocks
HTML articles powered by AMS MathViewer
 by Thomas Schlumprecht PDF
 Proc. Amer. Math. Soc. 107 (1989), 395408 Request permission
Abstract:
In this work we show that if ${X^ * }$ contains bounded sequences without weak* convergent convex blocks, then it contains an isometric copy of ${L_1}\left ( {{{\left \{ {0,1} \right \}}^{{\omega _1}}}} \right )$.References

S. A. Argyros, J. Bourgain and T. Zachariades, A result on the isomorphic embeddability of ${l_1}\left ( \Gamma \right )$, Stud. Math. 78 (1984), 7792.
J. Bourgain, La propiété de RadonNikodym, Publication des Math. de’l Université Pierre et Marie Currie, 36 (1979).
 Jean Bourgain and Joe Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58. MR 774176, DOI 10.1002/mana.19841190105
 L. Drewnowski and G. Emmanuele, On Banach spaces with the Gel′fandPhillips property. II, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391 (1990). MR 1053378, DOI 10.1007/BF02850021 D. Fremlin, Consequences of Martin’s axiom, Cambridge University Press, 1985.
 J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), no. 4, 325–330. MR 482086, DOI 10.1007/BF02760638
 Richard Haydon, An unconditional result about Grothendieck spaces, Proc. Amer. Math. Soc. 100 (1987), no. 3, 511–516. MR 891155, DOI 10.1090/S00029939198708911557
 Richard Haydon, Mireille Levy, and Edward Odell, On sequences without weak$^\ast$ convergent convex block subsequences, Proc. Amer. Math. Soc. 100 (1987), no. 1, 94–98. MR 883407, DOI 10.1090/S00029939198708834071
 E. Odell, Applications of Ramsey theorems to Banach space theory, Notes in Banach spaces, Univ. Texas Press, Austin, Tex., 1980, pp. 379–404. MR 606226
 A. Pełczyński, On Banach spaces containing $L_{1}(\mu )$, Studia Math. 30 (1968), 231–246. MR 232195, DOI 10.4064/sm302231246 H. P. Rosenthal, On the structure of weak*compact subsets of a dual Banach space, in preparation. Th. Schlumprecht, Limited sets in Banach spaces, Dissertation, München, 1987.
 Michel Talagrand, Un nouveau ${\cal C}(K)$ qui possède la propriété de Grothendieck, Israel J. Math. 37 (1980), no. 12, 181–191 (French, with English summary). MR 599313, DOI 10.1007/BF02762879
Additional Information
 © Copyright 1989 American Mathematical Society
 Journal: Proc. Amer. Math. Soc. 107 (1989), 395408
 MSC: Primary 46B20
 DOI: https://doi.org/10.1090/S00029939198909790521
 MathSciNet review: 979052