New combinatorial interpretations of two analytic identities
HTML articles powered by AMS MathViewer
- by A. K. Agarwal
- Proc. Amer. Math. Soc. 107 (1989), 561-567
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979216-7
- PDF | Request permission
Abstract:
Two generalized partition theorems involving partitions with "$n + 1$ copies of $n$" and " $n + 2$ copies of $n$", respectively, are proved. These theorems have potential of yielding infinite Rogers-Ramanujan type identities on MacMahon’s lines. Five particular cases are also discussed. Among them three are known and two provide new combinatorial interpretations of two known $q$-identities.References
- A. K. Agarwal, Partitions with “$N$ copies of $N$”, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985) Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 1–4. MR 927753, DOI 10.1007/BFb0072504
- A. K. Agarwal, Rogers-Ramanujan identities for $n$-color partitions, J. Number Theory 28 (1988), no. 3, 299–305. MR 932378, DOI 10.1016/0022-314X(88)90045-5
- A. K. Agarwal and George E. Andrews, Rogers-Ramanujan identities for partitions with “$n$ copies of $n$”, J. Combin. Theory Ser. A 45 (1987), no. 1, 40–49. MR 883892, DOI 10.1016/0097-3165(87)90045-8
- A. K. Agarwal and David M. Bressoud, Lattice paths and multiple basic hypergeometric series, Pacific J. Math. 136 (1989), no. 2, 209–228. MR 978611
- W. N. Bailey, On the simplification of some identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (3) 1 (1951), 217–221. MR 43839, DOI 10.1112/plms/s3-1.1.217
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 561-567
- MSC: Primary 05A19; Secondary 05A15, 05A17, 11P57
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979216-7
- MathSciNet review: 979216