## On the homotopy type of the spectrum representing elliptic cohomology

HTML articles powered by AMS MathViewer

- by Andrew Baker PDF
- Proc. Amer. Math. Soc.
**107**(1989), 537-548 Request permission

## Abstract:

In this paper we analyse the homotopy type at primes $p > 3$ of the ring spectrum $E\ell \ell$ representing a version of elliptic cohomology whose coefficient ring $E\ell {\ell _ * }$ agrees with the ring of modular forms for $S{L_2}(\mathbb {Z})$. For any prime (=maximal) graded ideal $\mathcal {P} \triangleleft E\ell {\ell _*}$ containing the Eisenstein function ${E_{p - 1}}$ as well as $p$, we show that there is a morphism of ring spectra \[ \widehat {E(2)} \to (E\ell \ell )_{\hat {\mathcal {P}}}\] and a corresponding splitting \[ (E\ell \ell )_{\hat {\mathcal {P}}} \simeq \bigvee \limits _i {\Sigma ^{2\theta (i)}}\widehat {E(2)}\] of algebra spectra over $\widehat {E(2)}$ (the ${I_2}$-adic completion of $E(2)$); here $(\;)_{\hat {\mathcal {P}}}$ denotes the $\mathcal {P}$-adic completion of the spectrum $E\ell \ell$. Moreover, there is a multiplicative reduction ${(E\ell \ell /\mathcal {P})^ * }(\;)$ and we similarly show that there is a splitting of $K(2)$ algebra spectra \[ E\ell \ell /\mathcal {P} \simeq \bigvee \limits _i {\Sigma ^{2\theta ’(i)}}K(2).\] In each case the indexing $i$ ranges over a finite set.## References

- J. F. Adams,
*Stable homotopy and generalised homology*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1995. Reprint of the 1974 original. MR**1324104** - Andrew Baker,
*Hecke operators as operations in elliptic cohomology*, J. Pure Appl. Algebra**63**(1990), no. 1, 1–11. MR**1037690**, DOI 10.1016/0022-4049(90)90052-J
—, - Jun-ichi Igusa,
*On the transformation theory of elliptic functions*, Amer. J. Math.**81**(1959), 436–452. MR**104668**, DOI 10.2307/2372750 - Jun-ichi Igusa,
*On the algebraic theory of elliptic modular functions*, J. Math. Soc. Japan**20**(1968), 96–106. MR**240103**, DOI 10.2969/jmsj/02010096 - Nicholas M. Katz,
*$p$-adic properties of modular schemes and modular forms*, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 69–190. MR**0447119** - Neal Koblitz,
*Introduction to elliptic curves and modular forms*, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR**766911**, DOI 10.1007/978-1-4684-0255-1 - Peter S. Landweber,
*Elliptic cohomology and modular forms*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 55–68. MR**970281**, DOI 10.1007/BFb0078038 - Peter S. Landweber,
*Supersingular elliptic curves and congruences for Legendre polynomials*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 69–93. MR**970282**, DOI 10.1007/BFb0078039 - Hideyuki Matsumura,
*Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR**879273** - Douglas C. Ravenel,
*Complex cobordism and stable homotopy groups of spheres*, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR**860042**
J.-P. Serre, - Jean-Pierre Serre,
*Formes modulaires et fonctions zêta $p$-adiques*, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 191–268 (French). MR**0404145**
—, - Nobuaki Yagita,
*The exact functor theorem for $\textrm {BP}_\ast /I_{n}$-theory*, Proc. Japan Acad.**52**(1976), no. 1, 1–3. MR**394631**

*Elliptic cohomology*, $p$

*-adic modular forms and Atkin’s operator*${U_p}$, preprint, 1988. A. Baker and U. Würgler,

*Liftings of formal group laws and the Artinian completion of*$v_n^{ - 1}BP$, preprint, 1988.

*Cours d’arithmétique*, Presses Universitaires de France, Vendôme.

*Congruences et formes modulaires*, Séminaire Bourbaki, Vol 24$^{e}$, no. 416, Lecture Notes in Mathematics

**317**(1971/2), 319-38. J. Silverman,

*The arithmetic of elliptic curves*, Springer-Verlag, New York.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**107**(1989), 537-548 - MSC: Primary 55N22; Secondary 11F11
- DOI: https://doi.org/10.1090/S0002-9939-1989-0982399-6
- MathSciNet review: 982399