A new proof of uniqueness for multiple trigonometric series
Author:
J. Marshall Ash
Journal:
Proc. Amer. Math. Soc. 107 (1989), 409-410
MSC:
Primary 42A63; Secondary 26A24
DOI:
https://doi.org/10.1090/S0002-9939-1989-0984780-8
Erratum:
Proc. Amer. Math. Soc. 108 (1990), null.
MathSciNet review:
984780
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Georg Cantor's 1870 theorem that an everywhere convergent to zero trigonometric series has all its coefficients equal to zero is given a new proof. The new proof uses the first formal integral of the series, while Cantor's proof used the second formal integral.
- [1] J. Marshall Ash, Uniqueness of representation by trigonometric series, Amer. Math. Monthly 96 (1989), no. 10, 873–885. MR 1033355, https://doi.org/10.2307/2324582
- [2] Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind, Herausgegeben von Ernst Zermelo. Nebst einem Lebenslauf Cantors von Adolf Fraenkel, Georg Olms Verlagsbuchhandlung, Hildesheim, 1962 (German). MR 0148517
- [3]
-, Beweis, das eine für jeden reellen Wert von
durch eine trigonometrische Reihe gegebene Funktion
sich nur auf eine einzige Weise in dieser Form darstellen lässt, Crelles J. für Math. 72 (1870) 139-142; also in Gesammelte Abhandlungen, Georg Olms, Hildesheim, 1962, 80-83.
- [4] C. Freiling and D. Rinne, A symmetric density property: monotonicity and the approximate symmetric derivative, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1098–1102. MR 936773, https://doi.org/10.1090/S0002-9939-1988-0936773-3
- [5] C. Freiling and D. Rinne, A symmetric density property for measurable sets, Real Anal. Exchange 14 (1988/89), no. 1, 203–209. MR 988365
- [6] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, 2 vols., Dover Publications, New York, 1957, MR 19 #1166.
- [7] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A63, 26A24
Retrieve articles in all journals with MSC: 42A63, 26A24
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0984780-8
Article copyright:
© Copyright 1989
American Mathematical Society