A note on the category of the free loop space
HTML articles powered by AMS MathViewer
- by E. Fadell and S. Husseini
- Proc. Amer. Math. Soc. 107 (1989), 527-536
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984789-4
- PDF | Request permission
Abstract:
A useful result in critical point theory is that the LjusternikSchnirelmann category of the space of based loops on a compact simply connected manifold $M$ is infinite (because the cup length of $M$ is infinite). However, the space of free loops on $M$ may have trivial products. This note shows that, nevertheless, the space of the free loops also has infinite category.References
- Antonio Ambrosetti and Vittorio Coti Zelati, Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. (4) 149 (1987), 237–259. MR 932787, DOI 10.1007/BF01773936
- Edward Fadell, On fiber spaces, Trans. Amer. Math. Soc. 90 (1959), 1–14. MR 101520, DOI 10.1090/S0002-9947-1959-0101520-0 —, Cohomological methods in non-free $G$-spaces with applications to general Borsuk-Ulam theorems and critical point theorems for invariant functionals, Nonlinear Functional Analysis and its Applications, Reidel, (1986), 1-47. —, Lectures in cohomological index theories of $G$-spaces with applications to critical point theory, Raccolta Di Universeta della Calabria, (1987), Cosenza, Italy.
- E. Fadell and S. Husseini, Relative cohomological index theories, Adv. in Math. 64 (1987), no. 1, 1–31. MR 879854, DOI 10.1016/0001-8708(87)90002-8
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- Witold Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 956–961. MR 73987, DOI 10.1073/pnas.41.11.956 P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Report No. 65, 1984. —, Periodic solutions for some forced singular Hamiltonian systems, Festschrift fur Jurgen Moser (to appear).
- Jacob T. Schwartz, Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307–315. MR 166796, DOI 10.1002/cpa.3160170304
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Micheline Vigué-Poirrier and Dennis Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), no. 4, 633–644. MR 455028
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 527-536
- MSC: Primary 55M30; Secondary 55P35, 58E10, 58F05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984789-4
- MathSciNet review: 984789