Compact endomorphisms of Banach algebras. II
HTML articles powered by AMS MathViewer
- by Herbert Kamowitz, Stephen Scheinberg and Dennis Wortman
- Proc. Amer. Math. Soc. 107 (1989), 417-421
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984801-2
- PDF | Request permission
Abstract:
In this note we exhibit examples which show that several conjectures concerning compact endomorphisms of commutative semisimple Banach algebras prove to be false.References
- W. G. Bade, P. C. Curtis Jr., and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR 896225, DOI 10.1093/plms/s3-55_{2}.359
- H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Functional Analysis 13 (1973), 28–50. MR 0343038, DOI 10.1016/0022-1236(73)90065-7
- Herbert Kamowitz, Compact operators of the form $uC_{\varphi }$, Pacific J. Math. 80 (1979), no. 1, 205–211. MR 534709, DOI 10.2140/pjm.1979.80.205
- Herbert Kamowitz, Compact endomorphisms of Banach algebras, Pacific J. Math. 89 (1980), no. 2, 313–325. MR 599123, DOI 10.2140/pjm.1980.89.313
- Herbert Kamowitz and Dennis Wortman, Endomorphisms of an extremal algebra, Proc. Amer. Math. Soc. 104 (1988), no. 3, 852–858. MR 931733, DOI 10.1090/S0002-9939-1988-0931733-0
- Anthony G. O’Farrell, Polynomial approximation of smooth functions, J. London Math. Soc. (2) 28 (1983), no. 3, 496–506. MR 724720, DOI 10.1112/jlms/s2-28.3.496
- Shûichi Ohno and Junzo Wada, Compact homomorphisms on function algebras, Tokyo J. Math. 4 (1981), no. 1, 105–112. MR 625122, DOI 10.3836/tjm/1270215742
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 417-421
- MSC: Primary 46J05; Secondary 47B05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984801-2
- MathSciNet review: 984801