Certain positive-definite kernels
HTML articles powered by AMS MathViewer
- by Mina Ossiander and Edward C. Waymire
- Proc. Amer. Math. Soc. 107 (1989), 487-492
- DOI: https://doi.org/10.1090/S0002-9939-1989-1011824-X
- PDF | Request permission
Abstract:
In one way or another, the extension of the standard Brownian motion process $\{ {B_t}:t \in [0,\infty )\}$ to a (Gaussian) random field $\{ {B_t}:{\text {t}} \in {\mathbf {R}}_ + ^d\}$ involves a proof of the positive semi-definiteness of the kernel used to generalize $\rho (s,t) = {\text {cov(}}{{\text {B}}_s}{\text {,}}{{\text {B}}_t}{\text {) = s}} \wedge t$ to multidimensional time. Simple direct analytical proofs are provided here for the cases of (i) the Lévy multiparameter Brownian motion, (ii) the Chentsov Brownian sheet, and (iii) the multiparameter fractional Brownian field.References
- N. N. Čencov, Wiener random fields depending on several parameters, Dokl. Akad. Nauk SSSR (N.S.) 106 (1956), 607–609 (Russian). MR 0077824
- Ramesh Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 121–226. MR 0215331
- Paul Lévy, Le mouvement brownien plan, Amer. J. Math. 62 (1940), 487–550 (French). MR 2734, DOI 10.2307/2371467
- Paul Lévy, Sur le mouvement brownien dépendant de plusieurs paramètres, C. R. Acad. Sci. Paris 220 (1945), 420–422 (French). MR 13265 —, Processus stochastiques et mouvement brownien, Gauthier Villars, Paris, 1948.
- Benoît Mandelbrot, Fonctions aléatoires pluri-temporelles: approximation poissonienne du cas brownien et généralisations, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), A1075–A1078 (French). MR 388559
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239, DOI 10.1137/1010093 M. Ossiander, Weak convergence and a law of the iterated logarithm for partial-sum processes indexed by points in a metric space, University of Washington, Ph.D. dissertation, 1984.
- Mina Ossiander and Ronald Pyke, Lévy’s Brownian motion as a set-indexed process and a related central limit theorem, Stochastic Process. Appl. 21 (1985), no. 1, 133–145. MR 834993, DOI 10.1016/0304-4149(85)90382-5
- Georg Pflug, A statistically important Gaussian process, Stochastic Process. Appl. 13 (1982), no. 1, 45–57. MR 662804, DOI 10.1016/0304-4149(82)90006-0
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
- Eugene Wong and Moshe Zakai, Martingales and stochastic integrals for processes with a multi-dimensional parameter, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 109–122. MR 370758, DOI 10.1007/BF00532559
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 487-492
- MSC: Primary 60G60; Secondary 43A35, 60G15
- DOI: https://doi.org/10.1090/S0002-9939-1989-1011824-X
- MathSciNet review: 1011824