UNITARY REPRESENTATIONS OF LIE GROUPS AND GÅRDING'S INEQUALITY

OLA BRATTELI, FRED M. GOODMAN, PALLE E. T. JØRGENSEN AND DEREK W. ROBINSON

(Communicated by Paul S. Muhly)

Abstract. We prove two versions of Gårding's inequality for strongly elliptic operators in the enveloping Lie algebra associated with a unitary representation of a Lie group. We then deduce a characterization of the differential structure of the representation in terms of the elliptic operators.

1. Introduction

Let (\mathcal{H}, G, U) denote a continuous representation of the connected Lie group G by unitary operators $U(g), g \in G$, on the Hilbert space \mathcal{H}. Fix a basis a_1, \ldots, a_d of the Lie algebra \mathfrak{g} of G and let A_1, \ldots, A_d denote the skew self-adjoint generators of the one-parameter subgroups $t \in \mathbb{R} \mapsto U(e^{-t a_i})$. If $\alpha = (\alpha_1, \ldots, \alpha_d), \alpha_i \geq 0$ and $|\alpha| = \alpha_1 + \cdots + \alpha_d$, we define $A^\alpha = A_1^{\alpha_1} A_2^{\alpha_2} \cdots A_d^{\alpha_d}$ and set $\mathcal{H}_\alpha = \bigcap_\beta D(A^\beta)$. It follows by standard reasoning that \mathcal{H}_∞ is norm dense in \mathcal{H}.

A form

$$\xi \in \mathbb{R}^d \rightarrow C_m(\xi) = \sum_{|\alpha| \leq m} c_\alpha \xi^\alpha \in \mathbb{C},$$

where $\xi^\alpha = \xi_1^{\alpha_1} \xi_2^{\alpha_2} \cdots \xi_d^{\alpha_d}$, is defined to be strongly elliptic if $\text{Re}((-1)^{m/2} P_m(\xi)) > 0$ for all $\xi \in \mathbb{R}^d \setminus \{0\}$, where P_m denotes the principal part of C_m, i.e.,

$$P_m = \sum_{|\alpha| = m} c_\alpha \xi^\alpha.$$

Equivalently, C_m is strongly elliptic if there is a $p > 0$ such that

$$\text{Re}((-1)^{m/2} P_m(\xi)) \geq p |\xi|^m$$

for all $\xi \in \mathbb{R}^d$. The largest value $p_m = p_m(c)$ of p for which this estimate is valid is called the ellipticity constant of C_m. Note that the strong ellipticity condition implies automatically that m is even.

Received by the editors June 17, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 47D40, 47F05, 22E30; Secondary 47H06, 47B25.
Next we associate with each unitary representation \((\mathcal{H}, G, U)\), each basis \(a_1, \ldots, a_d\), of \(g\), and each strongly elliptic form \(C_m\), an operator
\[
A_m(c) = \sum_{\alpha:|\alpha| \leq m} c_{\alpha} A^\alpha
\]
with domain \(D(A_m) = \mathcal{H}_\infty\). We refer to the \(A_m\) as strongly elliptic operators. The simplest example is the Laplacian
\[
\Delta = -\sum_{i=1}^{d} A_i^2
\]
corresponding to the form \(\xi \mapsto -|\xi|^2\).

Theorem 1.1. Let \(A_m(c)\) be strongly elliptic. For each \(p \in \langle 0, p_m(c) \rangle\) there is a \(q \geq 0\) such that
\[
\text{Re}(x, A_m(c)x) \geq p(x, \Delta^{m/2}x) - q(x, x)
\]
for all \(x \in \mathcal{H}_\infty\). Moreover, \(q\) can be chosen independently of the particular unitary representation.

An alternative, weaker version of the theorem can be stated in terms of the \(C^n\)-norms of the representation. These are defined by \(\|x\|_0 = \|x\|\) and
\[
\|x\|_n = \sup_{0 \leq r \leq d} \|A_i x\|_{n-1},
\]
where \(A_0 = I\). The \(C^n\)-subspace
\[
\mathcal{H}_n = \bigcap_{\alpha:|\alpha| \leq n} D(A^n)
\]
is a Banach space with respect to \(\|\cdot\|_n\), and \(\mathcal{H}_\infty\) is \(\|\cdot\|_n\)-dense in \(\mathcal{H}_n\) (see, for example, [G]).

Theorem 1.2. Let \(A_m(c)\) be strongly elliptic. For each \(p' \in \langle 0, p_m(c) \rangle\) there is a \(q' \geq 0\) such that
\[
\text{Re}(x, A_m(c)x) \geq p'\|x\|^{2m/2} - q'\|x\|^2
\]
for all \(x \in \mathcal{H}_\infty\). Moreover, \(q\) can be chosen independently of the particular unitary representation.

It was established by R. Goodman [G] that \(\mathcal{H}_n = D(\Delta^{n/2})\) and the norm \(\|\cdot\|_n\) on \(\mathcal{H}_n\) is equivalent to the graph norm \(x \mapsto \|\Delta^{n/2}x\| + \|x\|\). But more recently ([R1], [R2]) the following more precise estimates have been obtained; for each \(n = 1, 2, \ldots\) and \(\epsilon > 0\) there is a \(c_n(\epsilon)\) such that
\[
\|x\|_n \leq (1 + \epsilon)\|\Delta^{n/2}x\| + c_n(\epsilon)\|x\|
\]
for all \(x \in \mathcal{H}_n\). Therefore Theorem 1.2 follows easily from Theorem 1.1. Next we sketch the proof of the latter result. It is essentially a consequence of the work of Langlands [L1], [L2].
2. Outline of the proof of Theorem 1.1

If C_m is a strongly elliptic form with ellipticity constant p_m and $p \in (0, p_m)$ then the form C'_m defined by

$$C'_m(\xi) = C_m(\xi) - p(\xi^2)^{m/2}$$

is also strongly elliptic, with ellipticity constant $p'_m = p_m - p$. Since $A_m(c') = A_m(c) - pA^m/2$ the inequality (1.1) is equivalent to the lower semiboundedness property

$$\Re(x, A_m(c')x) \geq -q(x, x).$$

Therefore to prove Theorem 1.1 it suffices to prove that the real part of every strongly elliptic operator $A_m(c)$ is lower semibounded.

Let A^\dagger_m denote the formal adjoint of A_m on \mathcal{H}_∞, i.e.,

$$A^\dagger_m = \sum_{\alpha, |n| \leq m} \bar{c}_\alpha (-1)^{|n|} A^{\alpha*},$$

on \mathcal{H}_∞ where $A^{\alpha*} = A_\alpha^* \cdots A_1^*$. Then $R_m = (A_m + A^\dagger_m)/2$ is a symmetric operator on \mathcal{H}_∞. But it follows from the structure relations of g that $A^{\alpha*} = A^{\alpha}$ modulo lower order terms, i.e.,

$$A^{\alpha*} = A^{\alpha} + \sum_{\beta : |\beta| < |\alpha|} c_{\alpha, \beta} A^\beta,$$

where the $c_{\alpha, \beta}$ are polynomials in the structure constants. Therefore R_m is a strongly elliptic operator associated with a form C'_m whose principal part P'_m is given by

$$P'_m(\xi) = \sum_{\alpha, |n| = m} (\Re c_\alpha)\xi^n.$$

Now it follows from Langlands' [L1] first theorem that R_m is essentially self-adjoint, and from his second theorem that the self-adjoint closure \overline{R}_m generates a continuous semigroup, which is automatically self-adjoint. But then \overline{R}_m is lower semibounded by spectral theory. Hence there is a $q \geq 0$ such that

$$\Re(x, A_m x) = (x, R_m x) \geq -q(x, x)$$

for all $x \in \mathcal{H}_\infty$. Therefore (1.1) follows from the previous reasoning.

Finally, Langlands' [L1] third theorem establishes that the semigroup S generated by \overline{R}_m has a representation independent kernel, i.e.,

$$S_t = \int_G dg p_t(g) U(g),$$

where dg denotes the left invariant Haar measure and $p_t \in L_1(G; dg)$. Since

$$e^{qt} \leq \int_G dg |p_t(g)|$$
one can then choose \(q \) to be independent of the particular unitary representation. This completes the outline of the proof.

3. Differential structure

Let \(A_m = A_m(c) \) be a strongly elliptic operator with formal adjoint \(A_m^\dagger \) and define

\[
B_{2m} = A_m^\dagger A_m = \sum_{\alpha:|\alpha| \leq m} \sum_{\beta:|\beta| \leq m} \tilde{c}_\alpha c_\beta (-1)^{|\alpha|} A^\alpha A^\beta
\]

on \(\mathcal{H} \). Since \(A^\alpha A^\beta = A^{\alpha + \beta} \) modulo lower-order terms, it follows that \(B_{2m} \) is a strongly elliptic operator. Moreover, if \(P_m \) denotes the principal part of the form \(C_m \) associated with \(A_m \) and \(P'_{2m} \) the principal part of the form \(C'_{2m} \) associated with \(B_{2m} \) then

\[
P'_{2m}(\xi) = |P_m(\xi)|^2 \geq (\text{Re } P_m(\xi))^2.
\]

Therefore one has the inequality \(p'_{2m} \geq p_m^2 \) for the ellipticity constants, with equality whenever the principal part of \(C_m \) is real. Now applying Theorem 1.2 to \(B_{2m} \) one deduces the following.

Corollary 3.1. Let \(A_m(c) \) be strongly elliptic. For each \(p \in (0, p_m(c)) \) there is a \(q \geq 0 \), independent of the representation, such that

\[
\|x\|_m \leq (1/p)\|A_m(c)x\| + q\|x\|
\]

for all \(x \in \mathcal{H}_\infty \). Consequently \(A_m(c) \) is closed on \(\mathcal{H}_m \) and the \(C^m \)-norm \(\| \cdot \|_m \) is equivalent to the graph \(x \mapsto \|A_m(c)x\| + \|x\| \).

Proof. Replacing \(A_m(c) \) by \(B_{2m} = A_m(c)^\dagger A_m(c) \) in (1.2) one finds for each \(p' \in (0, p'_{2m}) \) a \(q' \geq 0 \) such that

\[
p'\|x\|_m^2 \leq \|A_m(c)x\|^2 + q'\|x\|^2
\]

for all \(x \in \mathcal{H}_\infty \). But \(p'_{2m} \geq p_m^2 \). Thus if \(p \in (0, p_m) \) and \(p' = p^2 \),

\[
\|x\|_m^2 \leq (1/p^2)\|A_m(c)x\|^2 + q'\|x\|^2.
\]

Then (3.1) follows by elementary reasoning. But

\[
\|A_m(c)x\| \leq \left[\sum_{\alpha:|\alpha| \leq m} |c_{\alpha}| \right] \|x\|_m
\]

and since \(\mathcal{H}_\infty \) is \(\| \cdot \|_m \)-dense in \(\mathcal{H}_m \) one immediately deduces the last statement of the corollary from (3.1) and (3.2).

Finally the foregoing reasoning extends to higher-order products. If \(A_{m_1}, \ldots, A_{m_n} \) are all strongly elliptic and \(m = m_1 + \cdots + m_n \) then

\[
B_{2m} = (A_{m_n}^\dagger \cdots A_{m_1}^\dagger)(A_{m_1} \cdots A_{m_n})
\]
is a strongly elliptic operator of order $2m$. Hence the same arguments show that the C^m-norm is equivalent to the graph norm

$$x \mapsto \| A_{m_1} \cdots A_{m_n} x \| + \| x \|.$$

Detailed proofs of these results will appear in [R2].

4. Semigroups bounds

The closure $\overline{A_m}$ of each strongly elliptic operator A_m generates a strongly continuous semigroup S holomorphic in a sector $\Delta_m(\phi) = \{ z \in \mathbb{C} ; \Re z > 0, |\Arg z| < \phi \}$ by Langlands' second theorem. Then if $\phi \in [0, \phi)$ it follows by general theory that there exist $M_\phi \geq 1$ and $\omega_\phi \geq 0$ such that

$$\| S_z \| \leq M_\phi e^{\omega_\phi |z|}$$

whenever $\Re z \geq 0$ and $|\Arg z| \leq \phi$. But the Gårding inequalities allow one to infer that $M_\phi = 1$, at least for small θ.

Corollary 4.1. Let C_m be a strongly elliptic form with ellipticity constant p_m, define

$$q_m = \sum_{\alpha : |\alpha| = m} |\Im c_\alpha|,$$

and $q_m = \tan^{-1} p_m / q_m$. Further let S denote the holomorphic semigroup generated by $A_m(c)$.

If $\theta \in [0, \phi_m)$ then there is an $\omega_\theta \geq 0$ such that

$$\| S_z \| \leq e^{\omega_\theta |z|}$$

for all $z \in \mathbb{C}$ with $\Re z > 0$, and $|\Arg z| \leq \theta$.

Proof. First, by Langlands' estimates [L2], or by [R2], the semigroup S is holomorphic in the sector $\Delta_m(\phi_m)$, and possibly in a larger sector. Thus if $z \in \mathbb{C}$ with $\Re z > 0$ and $|\Arg z| \leq \theta$ then zA_m generates a continuous semigroup. But

$$\Re (x, zA_m x) = (\Re z)(\Re (x, A_m x) - |\Im z| |\Im (x, A_m x)|^2$$

$$\geq (\Re z) \Re (x, A_m x) - |\Im z| q_m \| x \|_{m/2}^2$$

$$- |\Im z| r_m \| x \|_{m/2} \cdot \| x \|_{m/2-1},$$

where

$$r_m = \sum_{\alpha : |\alpha| \leq m} |\Im c_\alpha|.$$

Now for each $\delta > 0$,

$$\| x \|_{m/2} \cdot \| x \|_{m/2-1} \leq \delta \| x \|_{m/2}^2 + (1/4\delta) \| x \|_{m/2-1}^2.$$

Moreover, for each $\sigma > 0$ there is a $k_\sigma > 0$ such that

$$\| x \|_{m/2-1} \leq \sigma \| x \|_{m/2}^2 + k_\sigma \| x \|^2.$$
Hence for each $\varepsilon > 0$ there is a $c_\varepsilon > 0$ such that

$$\text{Re}(x, z A_m x) = (\text{Re} z) \text{Re}(x, A_m x) - |\text{Im} z'(q_m + \varepsilon)||x||^2 m/2 - |\text{Im} z'| ||x||^2.$$

Now we can use the second form of Gårding’s inequality (1.2) to deduce that for each $p' \in (0, p_m)$ there is a $q' > 0$ such that

$$\text{Re}(x, z A_m x) \geq (\text{Re} z) \text{Re}(x, A_m x) \left(1 - \frac{|\text{Im} z| q_m + \varepsilon}{p'}\right) - |\text{Im} z'| ||x||^2 \left(q'_m p' + c_\varepsilon\right).$$

But by choosing p' close to p_m and ε small, one can assure that $(1 - (q_m + \varepsilon)|\text{Im} z'|/p'\text{Re} z) > 0$. Then by another application of Gårding’s inequality there is a $q \geq 0$ such that $\text{Re}(x, A_m x) \geq -q||x||^2$. Therefore

$$\text{Re}(x, (z/|z|) A_m x) \geq -\omega_\theta ||x||^2$$

with $\omega_\theta = q\left(1 - ((q_m + \varepsilon)/p')\text{Tan} \theta\right) + q'_m p' + c_\varepsilon$.

Finally,

$$\frac{d}{d|z|} ||S_z x||^2 e^{-2\omega_\theta |z|} = -\text{Re}(S_z x, ((z/|z|) A_m + \omega_\theta I) S_z x) e^{-2\omega_\theta |z|} \leq 0.$$

Therefore, by integration,

$$||S_z x|| \leq e^{\omega_\theta |z|} ||x||$$

for all $z \in \mathbb{C}$ with $\text{Re} z \geq 0$ and $|\text{Arg} z| \leq \theta$.

References

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242

Institute of Mathematics, University of Trondheim, N-7034 Trondheim, Norway

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra ACT 2601, Australia