CAN THE WEYL ALGEBRA BE A FIXED RING?

S. P. SMITH

(Communicated by Donald S. Passman)

Abstract. If a finite soluble group acts as automorphisms of a domain, then the invariant subring is not isomorphic to the first Weyl algebra $\mathbb{C}[t,d/dt]$.

Let $R = \mathbb{C}[t,d/dt]$ be the first Weyl algebra. We prove the following result.

Theorem. Let G be a finite solvable group. Let $S \supseteq R$ be a \mathbb{C}-algebra such that
(a) S_R and R_S are finitely generated,
(b) S is a domain,
(c) G acts as automorphisms of S, and $S^G = R$.
Then $S = R$.

We will prove a rather more general result, from which the theorem follows. The original proof was improved by comments of T. J. Hodges. I would like to thank him for his interest, and for allowing his improvements to be included here.

Let B be an R-R-bimodule. We call B an invertible bimodule, if there exists another bimodule, C say, such that $B \otimes_R C$ is isomorphic to R as a bimodule. The invertible bimodules form a group under the operation of tensor product \otimes_R; this group is called the Picard group, denoted $\text{Pic}(R)$. If σ, $\tau \in \text{Aut}(R)$ are \mathbb{C}-linear algebra automorphisms of R, then we write σR_τ for the invertible bimodule which is R as an abelian group, and for which the right R-module action is given by

$$ b \cdot x = b\tau(x) \quad \text{for } x \in R, b \in \sigma R_\tau $$

and the left R-module action is given by

$$ x \cdot b = \sigma(x)b \quad \text{for } x \in R, b \in \sigma R_\tau. $$

There is a map $\text{Aut}(R) \to \text{Pic}(R)$ given by $\sigma \mapsto \sigma R_1$. This is a group homomorphism. A key point in our analysis is the following result of J. T. Stafford.
Theorem [3, Corollary 4.5]. The map $\text{Aut}(R) \to \text{Pic}(R)$ is an isomorphism.

Hence if B is an invertible R-bimodule, there exists $e \in B$ and $\sigma \in \text{Aut}(R)$ such that $x \cdot e = e \cdot \sigma(x)$ for all $x \in R$ (just take e to be the image of 1 under the isomorphism $R_1 \to B$).

Proposition. Let $S \supseteq R$ be a C-algebra satisfying conditions (a) and (b) of the theorem. Then the only invertible R-bimodule contained in S is R itself.

Proof. Let $B \subset S$ be an invertible bimodule. Choose $e \in B$ and $\sigma \in \text{Aut}(R)$ such that $B = Re = eR$ and $x \cdot e = e \cdot \sigma(x)$ for all $x \in R$ (here \cdot denotes multiplication in S). The multiplication in S is an R-bimodule map, so $B^n \cong e^n R_1$. If σ has infinite order (or equivalently, if B has infinite order in $\text{Pic}(R)$), then all the bimodules B^n are non-isomorphic, and their sum in S would be direct. However, since S_1 is finitely generated, S has finite length as an R-bimodule. Therefore, $\sigma^n = 1$ for some n. Hence for all $x \in R$, $xe^n = e^n \sigma^n(x) = e^n x$.

Therefore there is a surjective algebra homomorphism $R \otimes_C C[X] \to R[e^n]$, with $X \mapsto e^n$, where X is an indeterminate commuting with R. By [1, 4.5.1], the ideals of $R \otimes_C C[X]$ are of the form $R \otimes_C I$ where I is an ideal of $C[X]$. For $R[e^n] \cong R \otimes_C C[X]/R \otimes_C I \cong R \otimes_C C[X]/I$ to be a domain it is necessary that $I = \langle X - \alpha \rangle$ for some $\alpha \in C$. Thus $e^n = \alpha$. But $C[e] \subset S$ is a domain, so $n = 1$. Therefore $B = R$.

If M is a left R-module, then the rank of M is the dimension of $\text{Fract } R \otimes_R M$ as a left $\text{Fract } R$-module. It is clear that an invertible bimodule is of rank 1.

Proof of the theorem. First we prove it for G abelian. In that case write $S = \bigoplus \chi S_{\chi}$, where the sum is over the irreducible characters of G, and S_{χ} is the CG-submodule of S which is the sum of the χ-isotypical components. Therefore $S_1 = R$, $S_\chi S_\xi = S_{\chi \xi}$, and each S_χ is an R-bimodule.

Suppose that $S_\chi = R$, and let $0 \neq a \in S_{\chi}$. Then $S_{\chi}a \subset R$, and isomorphic to S_{χ} as a left R-module since S is a domain. In particular, S_{χ} is of rank 1 as a left R-module. Similarly, S_ξ is of rank 1 as a right R-module. The multiplication map on S gives an R-bimodule homomorphism $S_\chi \otimes_R S_{\xi} \to S_{\chi \xi}$. The image is non-zero subbimodule of R, hence equals R. Because all the ranks are 1, the map is injective. Therefore S_{χ} is an invertible bimodule. By the proposition, this forces $S_{\chi} = R$. Hence $S = R$ as required.

Now let G be any finite solvable group, and set $H = [G, G]$. Then there is an action of G/H as automorphisms of S^H, and $R = S^G = (S^H)^{G/H}$. But G/H is abelian, and the first part of the argument applied to S^H shows that $S^H = R$. Now by induction on $|G|$, the theorem follows.

Remarks. 1. It would be very nice to have the same result for an arbitrary finite group G, but a new idea is necessary. Not much is known about finitely generated R-bimodules which are not invertible, and that is probably a prerequisite.
2. I do not know of any domain $S \supset R$ such that (a) and (b) hold. It would be very interesting to know whether or not such an S could exist. I expect not.

3. More generally I think it would be an interesting question to look at some other well understood non-commutative algebras, and ask if they can occur as the fixed ring of some reasonable extension ring. See [2] for an example concerning primitive factor rings of $U(sl(2))$.

References

Department of Mathematics, University of Washington, Seattle, Washington 98195