ALGEBRAIC STRUCTURE
IN COMPLEX FUNCTION SPACES

A. J. ELLIS

(Communicated by William J. Davis)

Abstract. Let M be a complex function space containing constants, and let Z be the complex state space of M. If M is linearly isometric to a uniform algebra and if Z is affinely homeomorphic to the complex state space of a uniform algebra then we prove that M is a uniform algebra. Neither of the two conditions taken separately imply this conclusion.

If X is a compact Hausdorff space then $C_c(X), C_R(X)$ will denote the Banach spaces of all continuous complex-valued, respectively real-valued, functions on X with the supremum norm. A closed linear subspace M of $C_c(X)$ which contains constants and separates the points of X will be called a complex function space. The subset $S = \{\phi \in M^* : \|\phi\| = 1, \phi(1)\}$ of M^* is called the state space of M and the subset $Z = \text{co}(S \cup -iS)$ of M^* is called the complex state space of M; the sets S and Z are compact convex sets when endowed with the relative w^*-topology. If K is any compact convex subset of a locally convex Hausdorff space then $A(K), A_c(K)$ will denote the Banach spaces of all continuous real-valued, respectively complex-valued, affine functions on K with the supremum norm.

We shall be concerned with the linear and norm structure of M and the affine and topological structure of Z and will seek conditions which imply that M is a uniform algebra on X. To this end we say that the complex state spaces Z_1, Z_2 of two complex function spaces M_1, M_2 are equivalent if they are affinely homeomorphic, and that Z_1, Z_2 are real-equivalent if there is an affine homeomorphism $\eta : Z_1 \rightarrow Z_2$ which maps S_1 onto S_2 (and hence maps $-iS_1$ onto $-iS_2$).

We begin by developing [4, Examples 3 and 1] to show that the property that M has the linear and norm structure of a uniform algebra is independent from the property that Z is equivalent (or real-equivalent) to the complex state space of a uniform algebra.
Example 1. Let $M_1 = P(\Gamma)$ be the disc algebra on the unit circle Γ, and let $M = \{zf(z) : f \in M_1\}$. Then [4, Example 3] shows that M and M_1 are isometrically isomorphic while Z and Z_1 are not equivalent. We will show that Z is not equivalent to Z_2 for any uniform algebra M_2.

Suppose that Z is equivalent to Z_2. Then the connectedness of Γ implies that either Z is real-equivalent to Z_2 or Z is real-equivalent to the complex state space of M_2 (cf. [5]). We may hence assume that Z and Z_2 are real-equivalent, and that M_2 is a uniform algebra on Γ (cf. [4]). We have $M_2 = \{u + iv \circ \psi : u + iv \in M\}$, where $\psi : \Gamma \to \Gamma$ is a homeomorphism.

Now z and \bar{z} belong to M and so the functions $f(z) = x + \text{im} y(z)$ and $\bar{f}(z) = x - \text{im} y(z)$ belong to M_2, where we write $z = x + iy$. Hence the function $g(z) = x$ belongs to M_2 and similarly, using the facts that iz and $i\bar{z}$ belong to M, we see that the function $h(z) = y$ belongs to M_2. Consequently the uniform algebra M_2 equals $C_c(\Gamma)$. This implies that $M = C_c(\Gamma)$, giving the required contradiction.

Example 2. Let $M_1 = P(\Gamma)$ and $M = \{f : f(z) = u(z) + iv(-z) : u + iv \in M_1\}$. Then [4, Example 1] shows that Z and Z_1 are real-equivalent while M and M_1 are not isometrically isomorphic. We will show that M is not isometrically isomorphic to any uniform algebra M_2.

If M is isometrically isomorphic to M_2, a uniform algebra on X, then we will have $M_2 = \{\lambda(f \circ \tau) : f \in M\}$, where $\lambda \in M_2$ with $|\lambda| = 1$ and $\tau : X \to \Gamma$ a homeomorphism. Writing $M_3 = \{g \circ \tau^{-1} : g \in M_2\}$ we note that M_3 is a uniform algebra on Γ equal to $\{(\lambda \circ \tau^{-1})f : f \in M\} = \{lf : f \in M\}$, where $l = \lambda \circ \tau^{-1} \in M_3$ with $|l| = 1$. Since z^{2n} and \bar{z}^{2n+1} belong to M, $n \geq 0$, the functions $l(z)z^{2n}$ and $l(z)\bar{z}^{2n+1}$ belong to M_3. Since M_3 is an algebra and since $l(z)^2z^{2n} = l(z)(l(z)z^{2n})$, $l(z)^2\bar{z}^{2n+1} = l(z)(l(z)\bar{z}^{2n+1})$, $l(z)^2\bar{z}^{2n+1} = (l(z)z)(l(z)\bar{z}^{2n+2})$, $l(z)^2z^{2n} = (l(z)\bar{z})(l(z)\bar{z}^{2n+1})$ we see that the functions $l(z)^2z^k$, k any integer, belong to M_3. Since the polynomials in z and \bar{z} form a dense linear subspace of $C_c(\Gamma)$ it follows that $M_3 = C_c(\Gamma)$. This implies that $M = C_c(\Gamma)$, giving the required contradiction.

We will now show that if M has the linear and norm structure of a uniform algebra, and if Z is equivalent to the complex state space of a uniform algebra, then M is necessarily a uniform algebra. We note firstly however that we cannot replace ‘complex state space’ by ‘state space’ in this result. Indeed, in Example 1 above M and M_1 are isometrically isomorphic and, since M contains the Dirichlet algebra M_1, the state spaces of M and M_2 are equivalent to the state space of $C_R(\Gamma)$.

We need to recall some concepts, full details of which may be found in Asimow and Ellis [1]. The centre of $A(K)$ consists of those functions $f \in A(K)$ such that for each $G \in A(K)$ there is some $h \in A(K)$ satisfying $h(x) = f(x)g(x)$ for all $x \in \partial K$, where ∂K denotes the set of extreme points of K. The sets of constancy in ∂K for the central functions in $A(K)$ form...
the sets of extreme points of a family of faces \(\{ F_\alpha \} \) of \(K \), called the \textit{Šilov decomposition} for \(A(K) \). The maximal subsets \(E \) of \(\partial K \) such that the centre of \(A(\overline{\partial K}) \) is trivial form the sets of extreme points of a family of faces \(\{ F_\beta \} \) of \(K \) called the \textit{Bishop decomposition} for \(A(K) \). In the case when \(K \) is the complex state space of a uniform algebra these decompositions are closely related to the corresponding classical decompositions.

If \(Z \) is the complex state space of a function space \(M \) then \(\theta : M \to A(Z) \) will denote the real-linear homeomorphism defined by \(\theta f(z) = \text{re } z(f) \), noting that \(\theta(u + iv)(\lambda x - i(1 - \lambda)y) = \lambda u(x) + (1 - \lambda)v(y) \) when \(x, y \in X \) and \(0 \leq \lambda \leq 1 \). For this purpose we consider \(X \) to be canonically embedded in \(S \). \(\theta_1, \theta_2 \) will denote the corresponding maps for \(M_1 \) and \(M_2 \).

Theorem 1. Let \(M \) be a complex function space on \(X \) with complex state space \(Z \), and let \(M_j \) be uniform algebras with complex state spaces \(Z_j, j = 1,2 \). If \(M \) is isometrically isomorphic to \(M_1 \) and if \(Z \) is equivalent to \(Z_2 \) then \(M \) is a uniform algebra on \(X \).

Proof. We first prove the result in the special case when \(Z \) is real-equivalent to \(Z_2 \).

As in the discussion of the Examples above we may assume that \(M_1, M_2 \) are uniform algebras on \(X \), and that

\[
M = \{ l f : f \in M_1 \} = \{ u + iv \circ \psi : u + iv \in M_2 \},
\]

where \(l \in M \) with \(|l| = 1 \) and \(\psi : X \to X \) is a homeomorphism with \(\psi^2 \) equal to the identity map on the essential set for \(M_2 \). In order to prove that \(M \) is an algebra it will be sufficient to show that \(l \in M_1 \), that is \(l^2 \in M \). Write \(l = g + ih \) so that \(g + ih = u + iv \circ \psi \) for some \(u + iv \in M_2 \). Since \(M \) contains constants we must have \(l \in M_1 \), so that \(l = l^2 \in M \). Hence \(g - ih = u_1 + iv_1 \circ \psi \) for some \(u_1 + iv_1 \in M_2 \). Consequently we obtain \(g = u = u_1, h = v \circ \psi = -v_1 \circ \psi \), so that \(v = -v_1 \) and \(u - iv, u \) and \(v \) belong to \(M_2 \). But then \(l^2 = g^2 - h^2 + 2igh = 2u_2^2 - 1 + 2i((u \circ \psi^{-1})v) \circ \psi \) belongs to \(M \) because \(u \circ \psi^{-1} \) belongs to \(M_2 \) (cf. [4]). Hence \(M \) is an algebra.

We now turn to the general case where \(Z \) and \(Z_2 \) are equivalent and \(M = \{ l f : f \in M_1 \} \), with \(l \in M \). Firstly we identify the centres of \(A(Z) \) and \(A(Z_1) \). The centre of \(A(Z_1) \) consists of the functions \(\theta_1(u + iv) \) such that \(u, v \) belong to \(M_1 \) and \(u - v \) belongs to the essential ideal for \(M_1 \) (cf. [2, Theorem 1]).

Suppose that \(\theta(u + iv) \) belongs to the centre of \(A(Z) \). Then for each \(a + ib \in M \) we have \(ua + ivb \) belongs to \(M \), and since 1, i belong to \(M \) we may deduce that \(u \) and \(v \) belong to \(M \). If \(a + ib \in M \) then we have \(b - ia \in M \) and hence \(ub - iva \) and \(va + iub \) belong to \(M \). Consequently \((a + ib) \) belongs to \(M \) and \((u + ivb - va - iub) = (u - v)(a - ib) \) belongs to \(M \). Conversely, reversing this argument, we see that \(\theta(u + iv) \) belongs to the centre of \(A(Z) \) whenever \((u + v)M \) and \((u - v)\overline{M} \) are contained in \(M \).
Therefore \(\theta(u+iv) \) belongs to the centre of \(A(Z) \) if and only if \(f \in M_1 \) implies that \((u+v)f\) and \((u-v)\overline{f} \) belong to \(M \), that is \((u+v)f\) and \((u-v)\overline{f} \) belong to \(M_1 \). Taking \(f = 1 \) and also \(f = \overline{f} \in M_1 \), we see that \(u+v, u-v, u \) and \(v \) belong to \(M_1 \) whenever \(\theta(u+iv) \) belongs to the centre of \(A(Z) \). In this case taking \(f = \overline{g} \), where \(g \in M_1 \), we see that \((u-v)g \in M_1 \); since \((u-v)g \) belongs to \(M_1 \) it follows that \((u-v)\overline{g} \) and \((u-v)\overline{g} \) belong to \(M_1 \). The proof of [2, Theorem 1] now shows that \(u-v \) belongs to the essential ideal \(I_1 \) of \(M_1 \), that is \(\theta_1(u+iv) \) belongs to the centre of \(A(Z_1) \). Conversely, if \(u, v \in M_1 \), and \(u-v \in I_1 \) then, for all \(f \in M_1 \), we have \((u+v)f, (u-v)\overline{f} \in M_1 \), because \(\overline{f} \in C_\alpha(X) \). Hence \(\theta(u+iv) \) belongs to the centre of \(A(Z) \), and we have shown that the centres of \(A(Z) \) and \(A(Z_1) \) may be identified.

We may assume without loss of generality that \(X \) is the Šilov boundary for both \(M_1 \) and \(M \). Therefore we have shown that the Šilov decompositions of \(Y = X \cup -iX \) corresponding to \(A(Z) \) and \(A(Z_1) \) coincide. The Šilov decompositions of \(Y \) for \(A(Z_1) \), except for the singleton sets, consists of sets of the form \(E_\alpha \cup -iE_\alpha \), where \(E_\alpha \) belongs to the Šilov decomposition of \(X \) for \(M_1 \) (cf. [3]). Now \(M_1|E_\alpha \) and \(M|E_\alpha \) are isometrically isomorphic, and we may apply the preceding reasoning to these spaces to conclude that the Bishop decompositions of \(Y \) corresponding to \(A(Z) \) and \(A(Z_1) \) coincide.

The Bishop decomposition for \(A(Z) \), except for singletons, consists of faces of the form \(G_\beta = co(F_\beta \cup -iF_\beta) \), where \(F_\beta \cap X = E_\beta \) belongs to the Bishop decomposition for \(M_1 \). Moreover, if \(g \in C_\alpha(X) \) is such that \(g|E_\beta \) belongs to \(M|E_\beta \) for all \(\beta \), then \(\overline{g} \in C_\alpha(X) \) and \(\overline{g}|E_\beta \subseteq M_1|E_\beta \) for all \(\beta \) which implies that \(\overline{g} \in M_1 \), and hence \(g \) belongs to \(M \). We can hence conclude that \(M \) is an algebra if we can show that \(\overline{f}|E_\beta \) belongs to \(M|E_\beta \) for all \(\beta \).

Since \(Z \) is equivalent to \(Z_2 \), the faces of the Bishop decompositions for \(Z \) and \(Z_2 \) are equivalent. Therefore if we restrict attention to \(M|E_\beta \) and \(M_1|E_\beta \) we see that the complex state space \(G_\beta \) of \(M|E_\beta \) is equivalent to the complex state space of an antisymmetric uniform algebra \(M_3 \) (a restriction algebra of \(M_2 \)). However in this case either \(G_\beta \) is real-equivalent to \(Z_3 \) or is real-equivalent to the complex state space of \(M_3 \). In either case the first part of the proof shows that \(M|E_\beta \) is an algebra. Consequently \(\overline{f}|E_\beta \) belongs to \(M|E_\beta \) and the proof of the theorem is complete.

We remark that the condition in Theorem 1 that \(Z \) is equivalent to \(Z_2 \) is much weaker than the condition that \(Z \) is real-equivalent to \(Z_2 \). In fact if \(M \) is self-adjoint and if \(Z \) is real-equivalent to \(Z_2 \) then, since \(S \) is a split face of \(Z \), \(S_2 \) must be a split face of \(Z_2 \) which implies that \(M_2 \) is a \(C_\alpha(X) \)-space. This conclusion need not hold when \(Z \) and \(Z_2 \) are just equivalent, as the following example shows.

Example 3. Let \(Z_\Gamma, Z_{\Gamma'} \) denote respectively the complex state spaces of \(P(\Gamma) \), \(P(\Gamma') \), where \(P(\Gamma') \) is the uniform algebra generated by the polynomials on
\(\Gamma' = \{ z \in \mathbb{C} : |z - 3| = 1 \} \). Let \(M = A_C(Z_\Gamma) \) and \(M_2 = P(\Gamma \cup \Gamma') \). Then \(Z_2 \) is the convex hull of the disjoint closed split faces \(Z_\Gamma \) and \(-iZ_\Gamma \), while \(Z \) is the convex hull of the disjoint closed split faces \(Z_\Gamma \) and \(-iZ_\Gamma \). Since \(-iZ_\Gamma \) and \(Z_\Gamma \) are equivalent so are \(Z \) and \(Z_2 \). In this example \(M \) is self-adjoint while the uniform algebra \(M_2 \) is not a \(C_C(X) \)-space.

We note that it is easy to verify that no non-trivial uniform algebra can be isometrically isomorphic to a self-adjoint complex function space.

In the context of Theorem 1, Nagasawa's theorem [7] show that \(M_1 \) is unique in the sense that any two isometrically isomorphic uniform algebras are algebraically isomorphic. On the other hand \(M_2 \) need not be unique even if \(M \) is a \(C_C(X) \)-space (cf. [4, Example 2]). Our final result gives conditions under which \(M_2 \) is uniquely determined, up to complex conjugation. A related result appeared in Ellis and So [5, Corollary 6]).

Theorem 2. Let \(M_1, M_2 \) be uniform algebras with essential sets \(X, Y \) respectively. If \(Z_1 \) and \(Z_2 \) are equivalent then \(M_2|Y \) is isometrically isomorphic to \((M_1|E) \otimes \overline{M_1}|X\setminus E)\), for some open and closed subset \(E \) of \(X \).

Proof. Let \(\varphi : Z_1 \to Z_2 \) be an equivalence. The essential face for \(Z_1 \) has the form \(\text{co}(F \cup -iF) \), where \(F \) is the closed convex hull of \(X \) in \(S_1 \) (cf. [3, Proposition 17]). Since \(\varphi \) maps the essential face of \(Z_1 \) onto the essential face of \(Z_2 \), and since \(\text{co}(F \cup -iF) \) is the complex state space of \(M_1|X \), we can assume without loss of generality that \(M_1 \) and \(M_2 \) are essential uniform algebras, and that \(X, Y \) are the Šilov boundaries of \(M_1, M_2 \) respectively.

If we write \(E = \{ x \in X : \varphi(x) \in S_2 \} \) then \(X = E \cup (X\setminus E) \) is a peak-set decomposition of \(X \) for \(M_1 \) (cf. [5, Corollary 2]). Since \(M_1 \) is essential so are the algebras \(M_1|E \) and \(M_1|(X\setminus E) \) and hence \(E \) (respectively \(X\setminus E \)) is the closure of the union of non-singleton maximal antisymmetric sets for \(M_1|E \) (respectively \(M_1|(X\setminus E) \)) (cf. [6, page 65]).

The faces of the Bishop decomposition for \(Z_1 \) are the singletons \(x, -ix \), where \(x \) is a singleton member of the Bishop decomposition for \(M_1 \), together with faces of the form \(\text{co}(F_n \cup -iF_n) \), where \(F_n \) is the closed convex hull in \(S_1 \) of a non-singleton member of the Bishop decomposition for \(M_1 \). Now each \(\text{co}(F_n \cup -iF_n) \) is mapped by \(\varphi \) onto a corresponding member \(\text{co}(G_n \cup -iG_n) \) of the Bishop decomposition for \(Z_2 \). Consequently \(\text{co}(E \cup -iE) \) is mapped onto a face of the form \(\text{co}(H \cup -iH) \), and similarly for \(\overline{\text{co}}((X\setminus E) \cup -i(X\setminus E)) \). Since the Bishop decompositions determine \(M_1 \) and \(M_2 \), and since we have \(M_1|(F_n \cap X) = \{ f \circ \varphi : f \in M_2|(G_n \cap Y) \} \) whenever \(F_n \cap E \) is non-empty we see that \(M_1|E = \{ f \circ \varphi : f \in M_2|\varphi(E) \} \). Therefore \(M_1|E \) is isometrically isomorphic to \(M_2|\varphi(E) \). Similarly we may prove that \(M_1|(X\setminus E) \) is isometrically isomorphic to \(M_2|(Y\setminus \varphi(E)) \).
REFERENCES

Department of Mathematics, University of Hong Kong, Pokfulam Road, Hong Kong