On second-category sets
HTML articles powered by AMS MathViewer
- by P. Komjáth
- Proc. Amer. Math. Soc. 107 (1989), 653-654
- DOI: https://doi.org/10.1090/S0002-9939-1989-0976358-7
- PDF | Request permission
Abstract:
The existence of a measurable cardinal is equiconsistent to the existence of a second category set not decomposable into the union of uncountable many disjoint second category sets.References
- D. H. Fremlin, Consequences of Martin’s axiom, Cambridge Univ. Press, 1984.
- Gerald L. Itzkowitz, Continuous measures, Baire category, and uniform continuity in topological groups, Pacific J. Math. 54 (1974), no. 2, 115–125. MR 372114, DOI 10.2140/pjm.1974.54.115
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143–178. MR 270904, DOI 10.1016/0003-4843(70)90009-4
- John C. Morgan II, Baire category from an abstract viewpoint, Fund. Math. 94 (1977), no. 1, 13–23. MR 433416, DOI 10.4064/fm-94-1-59-64
- K. L. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. (Rozprawy Mat.) 68 (1970), 55. MR 262075
- Wacław Sierpiński, Hypothèse du continu, Chelsea Publishing Co., New York, N. Y., 1956 (French). 2nd ed. MR 0090558
- Robert M. Solovay, Real-valued measurable cardinals, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR 0290961 S. Ulam, Über gewisse Zerlegungen von Mengen, Fund. Math. 20 (1933), 221-223.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 653-654
- MSC: Primary 03E15; Secondary 03E55, 04A15, 28A12
- DOI: https://doi.org/10.1090/S0002-9939-1989-0976358-7
- MathSciNet review: 976358