On composition of four-symbol -codes and Hadamard matrices

Author:
C. H. Yang

Journal:
Proc. Amer. Math. Soc. **107** (1989), 763-776

MSC:
Primary 94B60; Secondary 05B20, 62K10

DOI:
https://doi.org/10.1090/S0002-9939-1989-0979054-5

MathSciNet review:
979054

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that key instruments for composition of four-symbol -codes are the Lagrange identity for polynomials, a certain type of quasisymmetric sequences (i.e., a set of normal or near normal sequences) and base sequences. The following is proved: If a set of base sequences for length and a set of normal (or near normal) sequences for length exist then four-symbol -codes of length can be composed by application of the Lagrange identity. Consequently a new infinite family of Hadamard matrices of order can be constructed, where is the order of Williamson matrices and . Other related topics are also discussed.

**[A]**S. S. Agaian,*Hadamard matrices and their applications*, Lecture Notes in Mathematics, vol. 1168, Springer-Verlag, Berlin, 1985. MR**818740****[GS]**Anthony V. Geramita and Jennifer Seberry,*Orthogonal designs*, Lecture Notes in Pure and Applied Mathematics, vol. 45, Marcel Dekker, Inc., New York, 1979. Quadratic forms and Hadamard matrices. MR**534614****[Go]**J.-M. Goethals and J. J. Seidel,*A skew Hadamard matrix of order 36*, J. Austral. Math. Soc.**11**(1970), 343–344. MR**0269527****[G]**Marcel J. E. Golay,*Complementary series*, IRE Trans.**IT-7**(1961), 82–87. MR**0125799****[H.]**Marshall Hall Jr.,*Combinatorial theory*, 2nd ed., Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR**840216****[HS]**M. Harwit and N. J. A. Sloane,*Hadamard transform optics*, Academic Press, New York, 1979.**[HW]**A. Hedayat and W. D. Wallis,*Hadamard matrices and their applications*, Ann. Statist.**6**(1978), no. 6, 1184–1238. MR**523759****[K]**C. Koukouvinos, S. Kounias and J. Seberry,*Further results on base sequences, disjoint complementary sequences*,*and the excess of Hadamard matrices*, (to appear).**[M]**A. C. Mukhopadhyay,*Some infinite classes of Hadamard matrices*, J. Combin. Theory Ser. A**25**(1978), no. 2, 128–141. MR**509438**, https://doi.org/10.1016/0097-3165(78)90075-4**[S]**Edward Spence,*An infinite family of Williamson matrices*, J. Austral. Math. Soc. Ser. A**24**(1977), no. 2, 252–256. MR**0505639****[T1]**R. J. Turyn,*Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings*, J. Combinatorial Theory Ser. A**16**(1974), 313–333. MR**0345847****[T2]**-, Personal communication, 1980.**[T3]**Richard J. Turyn,*An infinite class of Williamson matrices*, J. Combinatorial Theory Ser. A**12**(1972), 319–321. MR**0299503****[W]**Jennifer Seberry Wallis,*Construction of Williamson type matrices*, Linear and Multilinear Algebra**3**(1975/76), no. 3, 197–207. MR**0396299**, https://doi.org/10.1080/03081087508817111**[Wi]**John Williamson,*Hadamard’s determinant theorem and the sum of four squares*, Duke Math. J.**11**(1944), 65–81. MR**0009590****[Y1]**C. H. Yang,*A composition theorem for 𝛿-codes*, Proc. Amer. Math. Soc.**89**(1983), no. 2, 375–378. MR**712655**, https://doi.org/10.1090/S0002-9939-1983-0712655-2**[Y2]**C. H. Yang,*Lagrange identity for polynomials and 𝛿-codes of lengths 7𝑡 and 13𝑡*, Proc. Amer. Math. Soc.**88**(1983), no. 4, 746–750. MR**702312**, https://doi.org/10.1090/S0002-9939-1983-0702312-0**[Y3]**-,*Hadamard matrices and**-codes of length*, Proc. Amer. Math. Soc.**85**(1982),**[Y4]**C. H. Yang,*Hadamard matrices, finite sequences, and polynomials defined on the unit circle*, Math. Comp.**33**(1979), no. 146, 688–693. MR**525685**, https://doi.org/10.1090/S0025-5718-1979-0525685-8**[Y5]**-,*On Golay sequences and near normal sequences*, (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
94B60,
05B20,
62K10

Retrieve articles in all journals with MSC: 94B60, 05B20, 62K10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0979054-5

Article copyright:
© Copyright 1989
American Mathematical Society