The Stieltjes moments problem for rapidly decreasing functions
HTML articles powered by AMS MathViewer
- by Antonio J. Duran PDF
- Proc. Amer. Math. Soc. 107 (1989), 731-741 Request permission
Abstract:
We prove the following result: If ${\left ( {{a_n}} \right )_n}$ is a sequence of complex numbers, then there exists a ${\mathcal {C}^\infty }$-function $f$ such that $f$ and all its derivatives are rapidly decreasing functions, $f\left ( t \right ) = 0$ for $t < 0$ and $\int _0^{ + \infty } {{t^n}f\left ( t \right )dt = {a_n}}$. We extend this result for a generalized Stieltjes moments problem. Also, we characterize the ${C^\infty }$-functions $f$ in $\left ( {0, + \infty } \right )$ such that $f$ and all its derivatives are rapidly decreasing functions in $\left ( {0, + \infty } \right )$ and with null moments.References
-
N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
- R. P. Boas Jr., The Stieltjes moment problem for functions of bounded variation, Bull. Amer. Math. Soc. 45 (1939), no. 6, 399–404. MR 1563993, DOI 10.1090/S0002-9904-1939-06992-9
- Antonio J. Durán, Laguerre expansions of tempered distributions and generalized functions, J. Math. Anal. Appl. 150 (1990), no. 1, 166–180. MR 1059580, DOI 10.1016/0022-247X(90)90205-T N. F. Donoghue, Distribution and Fourier transform, Academic Press, New York 1969. A. Erdelyi, ed., Tables of integral transforms, Volume 1, Mc-Graw Hill, New York 1954. —, Higher transcendental functions, Volume 2, Mc-Graw Hill, New York 1953.
- Marianne Guillemot-Teissier, Développements des distributions en series de fonctions orthogonales. Séries de Legendre et de Laguerre, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 519–573 (French). MR 306897 G. H. Hardy, On Stieltjes "probleme des moments" (continued), in collected papers of G. M. Hardy Volume VII, Clarendon Press, Oxford 1979, 84-91.
- Georges Pólya, Sur les fréquences propres des membranes vibrantes, C. R. Acad. Sci. Paris 242 (1956), 708–709 (French). MR 74672
- G. Sansone, Orthogonal functions, Pure and Applied Mathematics, Vol. IX, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. Revised English ed; Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. MR 0103368 I. J. Schwatt, Operations with series, 2nd ed., Chelsea, New York.
- J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, American Mathematical Society, New York, 1943. MR 0008438
- T.-J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), no. 4, J1–J122 (French). MR 1508159
- Manuel Valdivia, On certain (LB)-spaces, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 3, 565–575. MR 2387055
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 731-741
- MSC: Primary 44A60; Secondary 33A65, 44A10
- DOI: https://doi.org/10.1090/S0002-9939-1989-0984787-0
- MathSciNet review: 984787