O(2) x O(2)-INARIANT HYPERSURFACES WITH CONSTANT NEGATIVE SCALAR CURVATURE IN E^4

TAKASHI OKAYASU

Abstract. We use the method of equivariant differential geometry to prove the existence of a complete hypersurface with constant negative scalar curvature in E^n (n ≥ 4). This is the first example of a complete hypersurface with constant negative scalar curvature in E^n (n ≥ 4).

1. Introduction

Let (G, En+1) be an isometric transformation group of the (n + 1)-dimensional Euclidean space En+1 with codimension two principal orbit type. Such orthogonal transformation groups are classified in [2]. It is natural and interesting to study hypersurfaces in En+1 with constant scalar curvature, which are invariant with respect to one of such orthogonal transformation group. In [1,4], O(n)-invariant hypersurfaces with constant scalar curvature in real space forms are classified completely. In particular, it is proved that all O(n)-invariant complete hypersurfaces with constant scalar curvature in E^{n+1} have nonnegative scalar curvature. In this paper, we consider O(2) x O(2)-invariant hypersurfaces in E^4. We show that there is an O(2) x O(2)-invariant complete hypersurface M^3 of constant negative scalar curvature in E^4. Making product M^3 with E^{n-3}, we obtain a complete hypersurface with constant negative scalar curvature in E^{n+1}. Note that these spaces are the first examples of complete hypersurfaces of constant negative scalar curvature in the Euclidean spaces.

2. O(2) x O(2)-INARIANT HYPERSURFACES

We consider (O(2) x O(2), E^4), where O(2) x O(2) acts orthogonally on E^4 via the representation ρ_2 ⊕ ρ_2'. We need the following fact [3].

(i) The orbit space of O(2) x O(2)-action on E^4 can be parametrized by Q: = {(x, y); x ≥ 0, y ≥ 0} with the orbital distance metric ds^2 = dx^2 + dy^2.
(ii) Interior points of Q correspond to principal orbits which are of the type $S^1 \times S^1$. More precisely, the inverse image of (x, y) in the interior of Q is a product $S^1(x) \times S^1(y)$.

We consider a smooth curve $\gamma(s) = (x(s), y(s))$ in the interior of Q, which is parametrized by the arc length (i.e. $(dx/ds)^2 + (dy/ds)^2 = 1$). We denote the $O(2) \times O(2)$-invariant hypersurface in E^4 generated by γ as M_γ. The induced metric g on M_γ is $g = x(s)^2 g_1 + y(s)^2 g_2 + ds^2$, where g_1, g_2 are the canonical metrics on $S^1(1)$, respectively.

Proposition 1. M_γ is of constant scalar curvature a if and only if γ satisfies the following differential equation.

\[
(x'y'' - y'x'') \left(-\frac{x'}{y} + \frac{y'}{x} \right) - \frac{x'y'}{xy} = \frac{a}{2},
\]

where x', y', x'', y'' are derivatives with respect to s.

Proof. Since the principal curvatures of M_γ in E^4 are $x'y'' - y'x''$, $-x'/y$ and y'/x, we get the conclusion.

Using $(dx/ds)^2 + (dy/ds)^2 = 1$ and $dy/ds = (dy/dx)(dx/ds)$, we write (1) as

\[
\frac{d^2y}{dx^2} = \left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\} \left\{ \frac{dy}{dx} + \frac{axy}{2} \left(1 + \left(\frac{dy}{dx} \right)^2 \right) \right\} \left(y \frac{dy}{dx} - x \right)^{-1}.
\]

From now on we assume that $a \leq 0$. We denote by $f(x, a)$ the solution of (2) satisfying the initial condition $y(1) = 1$, $y'(1) = -1$. Since (1) and (2) are symmetric with respect to x and y, we only consider $x \geq 1$ part of $y = f(x, a)$. From the elementary ODE theory, we see that $y = f(x, a)$ exists at least on the interval $[1, x']$, where x' is the least point which satisfies $f(x', a) = 0$ or $(df/dx)(x, a) = 0$.

Lemma 1. \textit{If $f(x, a) > 0$ and $(\partial f/\partial x)(x, a) < 0$, then $g(x', a) = 0$.}

Proof. From $a \leq 0$ and (2) we easily get the conclusion.

Lemma 2. \textit{If there is $x_0 > 1$ such that $f(x_0, a) = 0$ and $f(x, a) > 0$, $(\partial f/\partial x)(x, a) < 0$ for all $x \in [1, x_0)$, then $(\partial f/\partial x)(x_0, a) < 0$ (i.e. $y = f(x, a)$ intersects with the x-axis transversally).}

Proof. If $(\partial f/\partial x)(x_0, a) = 0$, then $y = 0$ and $y = f(x, a)$ are two distinct solutions of (2) with the same initial condition $y(x_0) = 0$, $(dy/dx)(x_0) = 0$. This is a contradiction.

By Lemmas 1 and 2, we can classify the solution $y = f(x, a)$ ($x \geq 1$).

Lemma 3. \textit{For any $a \leq 0$, $y = f(x, a)$ ($x \geq 1$) is one of the following three types (see Figure 1).}
(a) There is $x_0 > 1$ such that $f(x_0, a) = 0$ and $f(x, a) \geq 0$, $(\partial f/\partial x)(x, a) < 0$, $(\partial^2 f/\partial x^2)(x, a) > 0$ for all $x \in [1, x_0]$. In this case $y = f(x, a)$ intersects with the x-axis transversally.

(b) There is $x_0 > 1$ such that $(\partial f/\partial x)(x_0, a) = 0$ and $f(x, a) \geq f(x_0, a) > 0$, $(\partial f/\partial x)(x, a) \leq 0$, $(\partial^2 f/\partial x^2)(x, a) > 0$ for all $x \in [1, x_0]$.

(c) $y = f(x, a)$ is defined globally on $[1, \infty)$ and $f(x, a) > 0$, $(\partial f/\partial x)(x, a) < 0$, $(\partial^2 f/\partial x^2)(x, a) > 0$ for all $x \in [1, \infty)$. If $a < 0$, the x-axis is the asymptotic line of $y = f(x, a)$. If $a = 0$, $y = f(x, a)$ is asymptotic to $y = c$ for some $c \geq 0$.

Proof. Suppose that $y = f(x, a)$ is neither of type (a) nor (b). Since $f(x, a) - (\partial f/\partial x)(x, a)x$ is never zero, $f(x, a)$ is defined globally on $[1, \infty)$. It follows that $f(x, a) > 0$, $(\partial f/\partial x)(x, a) < 0$, $(\partial^2 f/\partial x^2)(x, a) > 0$ on $[1, \infty)$. Since $y = f(x, a)$ does not intersect with the x-axis, $\lim_{x \to \infty}(\partial f/\partial x)(x, a) = 0$. When $a < 0$, by (2) and $\lim_{x \to \infty}(\partial f/\partial x)(x, a) = 0$, we see that the x-axis
is the asymptotic line of $y = f(x, a)$. When $a = 0$, $y = f(x, a)$ is asymptotic to $y = c$ for some $c \geq 0$.

Proposition 2. $y = f(x, 0)$ is of type (a).

Proof. When $a = 0$, (2) becomes

$$\frac{d^2 y}{dx^2} = \left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\} \frac{dy}{dx} \left(y' \frac{dy}{dx} - x \right)^{-1}. \tag{3}$$

First we show that $y = f(x, 0)$ is not of type (b). If there is $x_0 > 1$ such that $(\partial f/\partial x)(x_0, 0) = 0$, then $y = f(x_0, 0)$ and $y = f(x, 0)$ are two distinct solutions of (3) with the same initial condition $y(x_0) = f(x_0, 0)$ and $(dy/dx)(x_0) = 0$. This is a contradiction. Next suppose that $y = f(x, 0)$ is of type (c). Then $f(x, 0) > 0$, $-1 < (\partial^2 f/\partial x^2)(x, 0) < 0$ and $(\partial^2 f/\partial x^2)(x, 0) > 0$ on $[1, \infty)$. By (3)

$$\frac{d^2 f}{dx^2} \leq -\frac{1}{x} \left\{ 1 + \left(\frac{df}{dx} \right)^2 \right\} \frac{df}{dx}, \tag{4}$$

where we abbreviate $(\partial f/\partial x)(x, 0) = (df/dx)$, $(\partial^2 f/\partial x^2)(x, 0) = (d^2 f/dx^2)$. We denote the solution of

$$\frac{d^2 y}{dx^2} = -\frac{1}{x} \left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\} \frac{dy}{dx}, \tag{5}$$

with the initial condition $y(1) = 1$, $(dy/dx)(1) = -1$ as $y = g(x)$. Then we obtain

$$g(x) = -\frac{1}{\sqrt{2}} \log \left(x + \sqrt{x^2 - 1/2} \right) + \frac{1}{\sqrt{2}} \log \left(1 + \frac{1}{\sqrt{2}} \right) + 1. \tag{6}$$

By the comparison theorem of a first-order ordinary differential equation, we get $df/dx \leq dg/dx$ for all $x \in [1, \infty)$. Integrating this inequality, we get $f(x, 0) \leq g(x)$ for all $x \in [1, \infty)$. Since $\lim_{x \to -\infty} g(x) = -\infty$, $\lim_{x \to -\infty} f(x, 0) = -\infty$. This is a contradiction. The conclusion follows from Lemma 3.

Proposition 3. There is $a_0 < 0$ satisfying the following property:

(i) $y = f(x, a)$ is of type (a) for all $a \in (a_0, 0]$.

(ii) $\lim_{a \to a_0^+} x_a = \infty$, where x_a is the x-coordinate of the intersection of $y = f(x, a)$ with the x-axis.

(iii) $y = f(x, a_0)$ is of type (c).

Proof. We set

$$A = \{ a \in (-\infty, 0] : y = f(x, a) \text{ is of type (a) for all } a \in [a, 0] \}. \tag{7}$$

By Proposition 2, Lemma 3 and the continuity on the parameter of the solution of an ordinary differential equation, we see that A is a nonempty connected
open subset of \((-\infty, 0]\). Set \(A = (a_0, 0]\), where \(-\infty \leq a_0 < 0\). For every \(a \in (a_0, 0]\), \(0 \leq f(x, a) \leq 1\), \(-1 \leq (\partial f/\partial x)(x, a) < 0\) and \((\partial^2 f/\partial x^2)(x, a) > 0\) on \([1, x_a]\). So we get from (2)

\[
\frac{\partial^2 f}{\partial x^2}(x, a) \geq -\frac{a}{4} f(x, a) \quad \text{on} \quad [1, x_a].
\]

We denote by \(h(x, a)\) the solution of \(dy^2/dx^2 = -ay/4\) satisfying the initial condition \(y(1) = 1\), \((dy/dx)(1) = -1\). We have

\[
h(x, 0) = 2 - x,
\]

\[
h(x, a) = \frac{1}{2} \left(1 - \frac{2}{\sqrt{-a}} \right) \exp \left(\frac{\sqrt{-a}(x - 1)}{2} \right) + \frac{1}{2} \left(1 + \frac{2}{\sqrt{-a}} \right) \exp \left(-\frac{\sqrt{-a}(x - 1)}{2} \right), \quad (a < 0).
\]

When \(-4 < a < 0\), \(y = h(x, a)\) intersects with the \(x\)-axis at \(x = (-a)^{-1/2}\).

\[
\log((2 + \sqrt{-a}/(2 - \sqrt{-a}))) + 1.
\]

For \(a \in (a_0, 0]\), we set

\[
B_a = \{x \in (1, x_a]; f(t, a) > h(t, a), \frac{\partial f}{\partial x}(t, a) > \frac{\partial h}{\partial x}(t, a) \quad \text{for all} \quad t \in (1, x_a)\}.
\]

We can easily that \(\sup B_a = x_a\). Thus for \(a \in (a_0, 0]\), \(f(x, a) \geq h(x, a)\) on \([1, x_a]\). Therefore \(x_a \geq (-a)^{-1/2}(2 + \sqrt{-a}/(2 - \sqrt{-a}))) + 1\) for all \(a \in (a_0, 0]\). Since \(\lim_{a \to -4+0}(-a)^{-1/2}(2 + \sqrt{-a}/(2 - \sqrt{-a}))) + 1 = \infty\), we get \(a_0 > -4\) and \(\lim_{a \to -4+0} x_a = \infty\). From (i) and (ii) we get (iii).

Theorem. There is an \(O(2) \times O(2)\)-invariant complete hypersurface with constant negative scalar curvature in \(E^4\).

Proof. By Proposition 3, there is \(a_0 < 0\) such that \(y = f(x, a_0)\) \((x \geq 1)\) is of type (c). Since the equations (1), (2) are symmetric with respect to \(x\) and \(y\), we can extend \(y = f(x, a_0)\) naturally on \((0, \infty)\) to get a global solution \(y\) of (1). Since \(y\) has an infinite length, \(M_y\) is complete.

Corollary. There is a complete hypersurface of constant negative scalar curvature in \(E^n\) for \(n \geq 4\).

Remarks. (1) By numerical analysis, we see that the scalar curvature of \(M_y\) constructed in the proof of the theorem is about -0.52.

(2) It seems that except \(S^3(\mathbb{R})\) and \(S^1(\mathbb{R}) \times E^2\), \(M_y\) in the theorem is the only \(O(2) \times O(2)\)-invariant complete hypersurface with constant scalar curvature in \(E^4\) (up to homothety). However, it seems that there are many \(O(p) \times O(q)\)-invariant complete hypersurfaces with constant scalar curvature in \(E^{p+q}\) for \(p + q > 4\). These problems will be studied in the future.
ACKNOWLEDGMENT

The author would like to express his hearty thanks to Professors S. Tanno and T. Takahashi for their constant encouragement and advice.

REFERENCES

Department of Mathematics, Faculty of Science, Hirosaki University, Hirosaki, 036, Japan