Cohomological local connectedness of decomposition spaces
HTML articles powered by AMS MathViewer
- by Jerzy Dydak and John J. Walsh
- Proc. Amer. Math. Soc. 107 (1989), 1095-1105
- DOI: https://doi.org/10.1090/S0002-9939-1989-0991693-4
- PDF | Request permission
Abstract:
For a map $f:X \to Y$, let ${\mathcal {H}^k}\left [ f \right ]$ denote the associated $k$-dimensional cohomology sheaf. The main result is that, for a proper map between locally compact metrizable spaces, if the sheaves ${\mathcal {H}^k}\left [ f \right ]$ are locally constant and $X$ is cohomologically locally connected, then $Y$ is cohomologically locally connected. The result can be viewed as a variation on a number of similar results dating to work of Vietoris. The setting for this paper is quite general and the proof is not difficult, involving a routine analysis using the Leray-Grothendieck spectral sequence. Versions of known comparable results for homotopical local connectedness can be recovered by combining the result with standard universal coefficient theorems that translate cohomological information to homological information and with a local Hurewicz theorem.References
- Steve Armentrout, Homotopy properties of decomposition spaces, Trans. Amer. Math. Soc. 143 (1969), 499–507. MR 273574, DOI 10.1090/S0002-9947-1969-0273574-9
- Steve Armentrout and Thomas M. Price, Decompositions into compact sets with $UV$ properties, Trans. Amer. Math. Soc. 141 (1969), 433–442. MR 244994, DOI 10.1090/S0002-9947-1969-0244994-3
- Edward G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. (2) 51 (1950), 534–543. MR 35015, DOI 10.2307/1969366
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0221500
- D. S. Coram and P. F. Duvall, Local $n$-connectivity and approximate lifting, Topology Appl. 13 (1982), no. 3, 225–228. MR 651505, DOI 10.1016/0166-8641(82)90031-1
- R. J. Daverman and J. J. Walsh, Acyclic decompositions of manifolds, Pacific J. Math. 109 (1983), no. 2, 291–303. MR 721921
- J. Dugundji, Modified Vietoris theorems for homotopy, Fund. Math. 66 (1969/70), 223–235. (errata insert). MR 254844, DOI 10.4064/fm-66-2-223-235
- Jerzy Dydak, Some properties of nearly $1$-movable continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 7, 685–689 (English, with Russian summary). MR 464226
- Jerzy Dydak, On $\textrm {LC}^{n}$-divisors, Topology Proc. 3 (1978), no. 2, 319–333 (1979). MR 540499
- J. Dydak and J. Segal, Local $n$-connectivity of decomposition spaces, Topology Appl. 18 (1984), no. 1, 43–58. MR 759138, DOI 10.1016/0166-8641(84)90030-0
- Jerzy Dydak and John Walsh, Sheaves that are locally constant with applications to homology manifolds, Geometric topology and shape theory (Dubrovnik, 1986) Lecture Notes in Math., vol. 1283, Springer, Berlin, 1987, pp. 65–87. MR 922273, DOI 10.1007/BFb0081420
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839 W. Hurewicz, Homotopie, Homologie, und Lokaler Zusammenhang, Fund. Math. 25 (1935), 467-485.
- George Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc. 21 (1969), 88–92. MR 238312, DOI 10.1090/S0002-9939-1969-0238312-X
- Sibe Mardešić and T. B. Rushing, Shape fibrations. I, General Topology Appl. 9 (1978), no. 3, 193–215. MR 510901, DOI 10.1016/0016-660x(78)90023-5
- Stephen Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604–610. MR 87106, DOI 10.1090/S0002-9939-1957-0087106-9
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 R. G. Swan, The theory of sheaves, Univ. Chicago Press, Chicago, 1964.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 1095-1105
- MSC: Primary 55N30; Secondary 54C10, 54D45, 55T99
- DOI: https://doi.org/10.1090/S0002-9939-1989-0991693-4
- MathSciNet review: 991693