ON BARELY α -COMPACT SPACES AND REMOTE POINTS IN $\beta_{\alpha}X \setminus X$

ROBERT L. BLAIR *, LECH T. POLKOWSKI, AND MARY ANNE SWARDSON

(Communicated by Dennis Burke)

ABSTRACT. Let X be a Tychonoff space. It was proved by Terada that if the cellularity of X is not Ulam-measurable, then no point of $vX \setminus X$ is a remote point of X. In this paper we generalize this result by proving that if X is barely α -compact, then no point in $\beta_{\alpha}X\setminus X$ is an α -exotic point of X. This implies, in particular, that if no cellular family in X has a α -measurable cardinality, then no point of $\beta_{\alpha}X\setminus X$ is a remote point of X; the Terada theorem then follows as a corollary when $\alpha=\omega_1$.

1. Introduction and preliminaries

By a space we will always mean a Tychonoff space, and α and κ will always denote infinite cardinals. By a mapping we will always mean a continuous mapping.

A subset A of a space X is regular closed if $A=\operatorname{cl}_X\operatorname{int}_XA$. The set RC(X) of regular closed subsets of X is a complete Boolean algebra when ordered by inclusion, and if $\mathscr{E}\subset RC(X)$, then $\bigwedge\mathscr{E}=\operatorname{cl}_X\operatorname{int}_X\cap\mathscr{E}$. A filter \mathscr{F} of RC(X) is a family $\mathscr{F}\subset RC(X)$ such that $\bigwedge\mathscr{E}\in\mathscr{F}$ for every finite $\mathscr{E}\subset\mathscr{F}$, $\varnothing\notin\mathscr{F}$ and $B\in\mathscr{F}$ whenever $A\in\mathscr{F}$ and $A\subset B\in RC(X)$. A filter \mathscr{F} of RC(X) is $\alpha\text{-complete}$ if $\bigwedge\mathscr{E}\neq\varnothing$ for every $\mathscr{E}\subset\mathscr{F}$ such that $|\mathscr{E}|<\alpha$.

A family $\mathscr A$ of sets has the α -intersection property if $\bigcap \mathscr B \neq \varnothing$ for every $\mathscr B \subset \mathscr A$ such that $|\mathscr B| < \alpha$. A family $\mathscr A$ with the ω -intersection property is said to be *finitely centered*. The family $\mathscr A$ is *free* if $\bigcap \mathscr A = \varnothing$; otherwise $\mathscr A$ is *fixed*. A family $\mathscr A$ of subsets of a space X converges to a point $p \in X$ if every neighborhood of p contains a member of $\mathscr A$; a point $q \in X$ is a cluster point of $\mathscr A$ if $q \in \operatorname{cl}_X A$ for every $A \in \mathscr A$.

Received by the editors May 22, 1987, and in revised form, December 3, 1987. This paper was presented at the Spring Topology Conference, University of Southwestern Louisiana, April 3-5, 1986.

^{*} Robert L. Blair died on November 18, 1988 after an extended illness.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54D40, 54D60; Secondary 54A25, 54G05.

Key words and phrases. Čech-Stone compactification, α -compactification, realcompactification, barely α -compact space, remote point, α -exotic point, regular closed set, cellular family, measurable cardinal, absolute.

For a space X, we denote by X^* the subspace $\beta X \setminus X$ of the Čech-Stone compactification βX of X. A point $p \in X^*$ is a *remote point* of X if $p \notin \operatorname{cl}_{\beta X} D$ for every nowhere dense subset D of X (see van Douwen [6] for a detailed discussion of remote points).

We denote by $\mathcal{Z}(X)$ the set of zero-sets in X. The α -compactification $\beta_{\alpha}X$ of X is defined as $\beta_{\alpha}X = \{p \in \beta X : \text{the ultrafilter of } \mathcal{Z}(X) \text{ which converges to } p \text{ has the } \alpha\text{-intersection property}\}$, and X is $\alpha\text{-compact}$ in the sense of Herrlich [12] if $X = \beta_{\alpha}X$ (see Comfort-Retta [5] for a detailed discussion of α -compact spaces). In particular, the ω_1 -compact spaces are the realcompact spaces and the ω_1 -compactification of X is the Hewitt realcompactification vX of X (see Gillman-Jerison [11] for the most important properties of realcompact spaces and realcompactifications).

A cellular family in X is a family of pairwise disjoint nonempty open subsets of X, and the cellularity c(X) of X is defined as $c(X) = \sup\{|\mathscr{A}| : \mathscr{A} \text{ is a cellular family in } X\} + \omega$ (see, e.g., Engelking [8, 1.7.12]).

A cardinal κ is measurable if there exists a free ultrafilter on the set κ with the κ -intersection property (see, e.g., Comfort-Negrepontis [4, p. 186]). For a cardinal α , we denote by $m(\alpha)$ the first measurable cardinal $\geq \alpha$ (if it exists); a cardinal κ is α -measurable if $\kappa \geq m(\alpha)$ (equivalently, there is a free ultrafilter on the set κ with the α -intersection property), and the ω_1 -measurable cardinals are the Ulam-measurable cardinals (Comfort-Negrepontis [4, p. 196]). It is consistent with the axioms of ZFC that there are no measurable cardinals, but it is not known whether the axioms of ZFC imply that there are not any.

A space X is said to be barely α -compact if every α -complete ultrafilter of RC(X) is fixed. General barely α -compact spaces are studied in Blair-Polkowski-Swardson [3]; as noticed therein, they extend the class of almost α -compact spaces introduced in Frolík ([9], [10]) in case $\alpha = \omega_1$ and in Bhaumik-Misra [1] in case $\alpha \neq \omega_1$. In particular, every α -compact space is barely α -compact.

We say that a point $p \in X^*$ is an α -exotic point of X if $\bigwedge \mathcal{E} \neq \emptyset$ whenever $\mathcal{E} \subset RC(X)$ is such that $|\mathcal{E}| < \alpha$, $\bigwedge \mathcal{H} \neq \emptyset$ for every finite $\mathcal{H} \subset \mathcal{E}$, and p is a cluster point of \mathcal{E} in βX .

Our main results are that if X is barely α -compact, then there is no α -exotic point of X in X^* (2.7), that every X with the property that no cellular family in X has α -measurable cardinality is barely α -compact (2.11), and that every remote point of X in $\beta_{\alpha}X\setminus X$ is α -exotic (3.1). They imply, in particular, that if no cellular family in X has α -measurable cardinality, then no point of $\beta_{\alpha}X\setminus X$ is a remote point of X (3.2). When $\alpha=\omega_1$, this last statement implies the following theorem of Terada [14, p. 264]: If c(X) is not Ulam-measurable, then no point of $vX\setminus X$ is a remote point of X (3.3).

We do not discuss in this paper some other interesting questions concerning α -exotic points that are suggested by known properties of remote points; they will be discussed elsewhere.

We would also like to mention a recent paper by Dow [7], where an independent extension of the Terada theorem is given.

2. Barely α -compact spaces and α -exotic points

We begin with a well-known property of regular closed sets.

2.1. **Lemma.** If $D \subset X$ is a dense subset of X, then the mapping $A \mapsto \operatorname{cl}_X A$ is a Boolean algebra isomorphism of RC(D) onto RC(X), with the inverse isomorphism given by $A \mapsto A \cap D$.

We rely on the following properties of filters of RC(X):

- 2.2. **Lemma.** If X and T are spaces, $X \subset T$ and \mathcal{F} is a filter of RC(X), then (a) and (b), below, are equivalent for every $p \in T$:
 - (a) p is a cluster point of \mathcal{F} ;
 - (b) there exists an ultrafilter \mathscr{U} of RC(X) such that $\mathscr{F} \subset \mathscr{U}$ and \mathscr{U} converges to p.
- *Proof.* Clearly, (b) implies (a). Assume (a) and let $\mathscr{V} = \{V : V \text{ is a closed neighborhood of } p \text{ in } T \}$ and $\mathscr{V}' = \{\operatorname{cl}_X(X \cap \operatorname{int}_T V) : V \in \mathscr{V} \}$. Then $\mathscr{F} \cup \mathscr{V}'$ is finitely centered in RC(X) and thus there exists an ultrafilter \mathscr{U} of RC(X) such that $\mathscr{F} \cup \mathscr{V}' \subset \mathscr{U}$. Clearly, \mathscr{U} converges to p.
- 2.3. Corollary. If \mathscr{F} is an ultrafilter of RC(X), then \mathscr{F} converges to some $p \in \beta X$ and, conversely, for each $p \in \beta X$ there exists an ultrafilter \mathscr{F} of RC(X) which converges to p.

We let $b_{\alpha}X = X \cup \{p \in X^* : \text{ there exists an } \alpha\text{-complete ultrafilter of } RC(X)$ which converges to $p \}$.

- 2.4. **Proposition.** (a) $b_{\alpha}X$ is barely α -compact;
 - (b) $b_{\alpha}X$ is the smallest barely α -compact subspace of βX which contains X;
 - (c) X is barely α -compact if and only if $X = b_{\alpha}X$.

Proof. By 2.1 and 2.3, if \mathscr{F} is an α -complete ultrafilter of $RC(b_{\alpha}X)$, then $\mathscr{F}|X=\{F\cap X\colon F\in\mathscr{F}\}$ is an α -complete ultrafilter of RC(X) and hence $\mathscr{F}|X$ converges to some $p\in\beta X$. Thus $p\in b_{\alpha}X$ and we have $\cap\mathscr{F}=\{p\}\neq\varnothing$. It follows that $b_{\alpha}X$ is barely α -compact. Assume, now, that $X\subset T\subset\beta X$ and that T is barely α -compact. Let $p\in b_{\alpha}X$. There exists an α -complete ultrafilter \mathscr{F} of RC(X) which converges to p. By 2.1, again, $\mathscr{Z}=\{\operatorname{cl}_T F\colon F\in\mathscr{F}\}$ is an α -complete ultrafilter of RC(T) and, by 2.2, \mathscr{Z} converges to some $q\in T$. Clearly, q=p and thus $p\in T$. It follows that $b_{\alpha}X\subset T$, which proves (b). Clearly, (b) implies (c).

A space X is extremally disconnected if, for every open set $U \subset X$, the closure $\operatorname{cl}_X U$ is open in X (see e.g., Engelking [8, p. 452]). A space X is extremely disconnected at a point $p \in X$ if $p \in \operatorname{cl}_X U \cap \operatorname{cl}_X W$ implies

that $U \cap W \neq \emptyset$ for each pair U, W of open subsets of X (van Douwen [6, 1.7]); clearly, X is extremally disconnected if and only if X is extremally disconnected at each of its points. We recall that βX is extremally disconnected whenever X is extremely disconnected (see, e.g., Engelking [8, 6.2.27]). For an open subset U of X, we let $\operatorname{Ex}_X U = \beta X \setminus \operatorname{cl}_{\beta X}(X \setminus U)$ (see van Douwen [6, 3.1, 3.2] for properties of the operator Ex_X).

2.5. **Lemma.** Suppose that βX is extremally disconnected at a point $p \in \beta X$. If p is a cluster point of a family $\mathcal{E} \subset RC(X)$, then $p \in \operatorname{cl}_{\beta X} \bigwedge \mathcal{H}$ for every finite $\mathcal{H} \subset \mathcal{E}$; in particular, there exists a unique ultrafilter of RC(X) which converges to p.

Proof. Because of Lemma 2.2, it is sufficient to observe that as βX is extremally disconnected at p, if

$$p \in \operatorname{cl}_{\beta X} U_1 \cap \operatorname{cl}_{\beta X} U_2 \cap \cdots \cap \operatorname{cl}_{\beta X} U_n$$
,

then

$$p \in \operatorname{cl}_{\beta X}(U_1 \cap U_2 \cap \cdots \cap U_n)$$

for every family $\{U_1, U_2, \dots, U_n\}$ of open subsets of X.

- 2.6. **Proposition.** For every $p \in X^*$, (a), below, implies (b), and (a) and (b) are equivalent in case βX is extremally disconnected at p:
 - (a) p is α -exotic;
 - (b) if p is a cluster point of a filter \mathscr{F} of RC(X), then \mathscr{F} is α -complete; in particular, if \mathscr{F} is an ultrafilter of RC(X) that converges to p, then \mathscr{F} is α -complete.

Proof. Clearly, (a) implies (b), and 2.2 and 2.5 imply that (a) follows from (b) when βX is extremally disconnected at p.

Our main result can now be stated as follows:

- 2.7. **Theorem.** (a), below, implies (b), and (a) and (b) are equivalent in case X is extremally disconnected:
 - (a) X is barely α -compact;
 - (b) no point of X^* is an α -exotic point of X.

Proof. To prove that (a) implies (b), assume that $p \in X^*$ is an α -exotic point of X. By 2.3 and 2.6 there exists an α -complete ultrafilter of RC(X) that converges to p, and thus, by 2.4(c), X is not barely α -compact. Assume, now, that X is extremally disconnected and X is not barely α -compact. By 2.4(c), there exists $p \in b_{\alpha}X \setminus X$ and thus there exists an α -complete ultrafilter of RC(X) which converges to p. By 2.5 and 2.6, p is α -exotic.

We denote by E(X) the absolute of X, and by k_X a perfect irreducible mapping of E(X) onto X (see Woods [15] for a survey of absolutes); we recall that E(X) is extremally disconnected (see, e.g., Woods [15, Theorem 2.1]). Clearly, c(X) = c(E(X)).

For a mapping $f: X \to Y$, we denote by $\beta f: \beta X \to \beta Y$ the Stone extension of f.

- 2.8. **Lemma** (cf. Woods [15, 2.3]). If $f: Z \to Y$ is a closed irreducible mapping of Z onto Y, then $A \mapsto f(A)$ is a Boolean algebra isomorphism of RC(Z) onto RC(Y).
- 2.9. **Proposition.** Let $f: Z \to Y$ be a closed irreducible mapping of Z onto Y. Then $p \in b_{\alpha}Y$ if and only if $p = \beta f(q)$ for some $q \in b_{\alpha}Z$; that is, $b_{\alpha}Y = f(b_{\alpha}Z)$.

Proof. By 2.8, \mathscr{F} is an α -complete ultrafilter of RC(Y) if and only if $\mathscr{F}=f(\mathscr{Z})\ (=\{f(A)\colon A\in\mathscr{Z}\})$ for some α -complete ultrafilter \mathscr{Z} of RC(Z). Clearly, \mathscr{Z} converges to a point $z\in\beta Z$ if and only if $\mathscr{F}=f(\mathscr{Z})$ converges to $\beta f(z)$. It follows that $p\in b_{\alpha}Y$ if and only if $p=\beta f(q)$ for some $q\in b_{\alpha}Z$.

Propositions 2.4(c) and 2.9, along with the fact that $k_X : E(X) \to X$ is perfect irreducible, imply the following:

2.10. Corollary. X is barely α -compact if and only if E(X) is barely α -compact.

We can now prove the next result, which will provide (in 3.2 and 3.3) a link between the case $\alpha = \omega_1$ of 2.7 and the Terada theorem:

2.11. **Theorem.** If no cellular family in X has α -measurable cardinality, then X is barely α -compact.

Proof. By 2.10, it is sufficient to prove the theorem in case X is extremally disconnected, and in this case it is sufficient, by 2.7, to prove that no point of X^* is an α -exotic point of X. Assume, on the contrary, that $p \in X^*$ is an α -exotic point of X. Consider a maximal cellular family $\mathscr U$ in X with the property that $p \notin \operatorname{cl}_{\beta X} U$ for every $u \in \mathscr U$ (cf. the proof of the Theorem in Terada [14, p. 264]). Note that $\bigcup \mathscr U$ is dense in X and let $\mathscr W = \{\mathscr V \subset \mathscr U \colon p \in \operatorname{cl}_{\beta X} \bigcup \mathscr V \}$. By the proof of 2.5, $\mathscr W$ is a filter (in fact, an ultrafilter) on $\mathscr U$, and clearly $\mathscr W$ is free. Let $\mathscr A \subset \mathscr W$ with $|\mathscr A| < \alpha$ and let $\mathscr E = \{\operatorname{cl}_X \bigcup \mathscr V \colon \mathscr V \in \mathscr A\}$. Since p is α -exotic, 2.6 yields $\bigwedge \mathscr E \neq \varnothing$; and then, since $\bigcup \mathscr U$ is dense in X, it follows that $\bigcap \mathscr A \neq \varnothing$. Thus $\mathscr W$ has the α -intersection property, so $|\mathscr U|$ is α -measurable, a contradiction.

3. Remote points in $\beta_{\alpha}X \setminus X$

Our main result in this section is the following:

3.1. **Theorem.** Every remote point of X in $\beta_{\alpha}X \setminus X$ is an α -exotic point of X.

Proof. Let $p \in \beta_{\alpha} X \setminus X$ be a remote point of X. As X is extremally disconnected at p (see van Douwen [6, 5.2]), it follows from 2.5 and 2.6 that it is sufficient to prove that the unique ultrafilter \mathscr{F} of RC(X) which converges to p is α -complete. Now, let $\mathscr{E} \subset \mathscr{F}$ with $|\mathscr{E}| < \alpha$. For every $A \in \mathscr{E}$, as $p \in \operatorname{cl}_{\beta X} \operatorname{int}_X A$ and p is a remote point of X, we have $p \in \operatorname{Ex}_X \operatorname{int}_X A$ (see van Douwen [6, 5.1(b)]). For each $A \in \mathscr{E}$, select a zero-set neighborhood Z_A of p in βX such that $Z_A \subset \operatorname{Ex}_X \operatorname{int}_X A$. As $|\{Z_A \colon A \in \mathscr{E}\}| < \alpha$, and $p \in \operatorname{cl}_{\beta X}(Z_A \cap X)$, hence $p \in \beta_{\alpha} X \cap \operatorname{cl}_{\beta X}(Z_A \cap X) = \operatorname{cl}_{\beta_{\alpha} X}(Z_A \cap X)$ for every $A \in \mathscr{E}$, we have $p \in \bigcap_{A \in \mathscr{F}} \operatorname{cl}_{\beta_{\alpha} X}(Z_A \cap X) = \operatorname{cl}_{\beta_{\alpha} X}\bigcap_{A \in \mathscr{E}} (Z_A \cap X)$ (see Comfort-Retta [5, 2.3(h)]). Thus

$$p\in\operatorname{cl}_{\beta X}\bigcap_{A\in\mathcal{X}}(X\cap\operatorname{Ex}_X\operatorname{int}_XA)=\operatorname{cl}_{\beta X}\bigcap_{A\in\mathcal{X}}(\operatorname{int}_XA)\subset\operatorname{cl}_{\beta X}\bigcap\mathcal{E}.$$

As p is a remote point of X, $\operatorname{int}_X \cap \mathcal{E} \neq \emptyset$ and thus $\bigwedge \mathcal{E} \neq \emptyset$. It follows that \mathcal{F} is α -complete and thus p is an α -exotic point of X.

Theorems 2.7, 2.11 and 3.1 imply the following:

- 3.2. **Corollary.** If X is barely α -compact (in particular, if no cellular family in X has α -measurable cardinality), then no point in $\beta_{\alpha}X\setminus X$ is a remote point of X.
- 3.3. Corollary (Terada [14]). If c(X) is not Ulam-measurable, then no point of $vX \setminus X$ is a remote point of X.
- 3.4. Remark. Since every zero-set of X is a G_{δ} in X, one can use 2.6 to prove that if $p \in X^*$ is α -exotic and $\mathscr F$ is the ultrafilter of $\mathscr Z(X)$ converging to p, then $\operatorname{int}_X \bigcap \mathscr H \neq \varnothing$ for every $\mathscr H \subset \mathscr F$ such that $|\mathscr H| < \alpha$; a fortiori, $p \in \beta_{\alpha} X \setminus X$.
- 3.5. Remarks. (1) The Alexandroff compactification of the discrete space $D(\kappa)$ of cardinality κ , where $\kappa \geq m(\alpha)$, is barely α -compact and has cellularity $\geq m(\alpha)$. Thus, the converse of 2.11 is not true.
- (2) Assume that κ has its natural order topology and that $cf(\kappa) > \omega$ (so that $\kappa^* = \{\kappa\}$). Express the set D of successor ordinals of κ as $\bigcup_{n \in \omega} D_n$, where the D_n 's are pairwise disjoint and cofinal in κ , and let $\mathscr{E} = \{\operatorname{cl}_{\kappa} \bigcup_{m \geq n} D_m : n \in \omega\}$. Then \mathscr{E} is a subset of $RC(\kappa)$ that witnesses that κ is not an ω_1 -exotic (and hence not an α -exotic) point of κ . Assume, further, that $\kappa = m(\alpha)$. Then D is not α -compact (since $|D| = m(\alpha)$ [5, 5.3]), and hence there is a free α -complete ultrafilter \mathscr{F} on D. By 2.1, $\mathscr{F}' = \{\operatorname{cl}_{\kappa} A : A \in \mathscr{F}\}$ is an α -complete ultrafilter of $RC(\kappa)$. Since \mathscr{F}' is easily seen to be free, κ is not barely α -compact, and thus (a) and (b) of 2.7 are, in general, not equivalent.
- (3) The space $X = \beta_{\alpha} D(\kappa) \setminus \{p\}$, where $\kappa \geq m(\alpha)$ and p is the limit point in $\beta D(\kappa)$ of a free α -complete ultrafilter on $D(\kappa)$, has no remote point in $\beta_{\alpha} X \setminus X = \{p\}$, while p is an α -exotic point of X. Thus, the converse of 3.1 does not hold.

- (4) One can show that if $p \in X^*$ is an α -exotic point of X and $k_X(q) = p$ for some $q \in E(X)^*$, then q is an α -exotic point of E(X). The mapping $k_\kappa \colon E(\kappa) \to \kappa$, where κ is as in (2), above, does not preserve α -exotic points. (By 2.10 and (2), $E(\kappa)$ is not barely α -compact, and thus by 2.7 there are α -exotic points of $E(\kappa)$ in $E(\kappa)^*$, while there are no α -exotic points of κ in κ^* .
- (5) A subset $S \subset X$ is cellularly embedded in X (Swardson [13, p. 664]) if every cellular family in S can be extended to a cellular family in X. In Blair [2, 2.3], the Terada theorem was strengthened in yet another direction by showing that if no closed discrete cellularly embedded subset of X has Ulammeasurable cardinality, then no point of $vX \setminus X$ is a remote point of X. Let us observe that this last statement has no counterpart for α -exotic points: every closed discrete subset of the space X in (3), is finite, and yet there is an α -exotic point of X in X^* .

REFERENCES

- 1. R. N. Bhaumik and D. N. Misra, A generalization of K-compact spaces, Czechoslovak Math. J. 21 (1971) 625-632.
- 2. R. L. Blair, A note on remote points, Glasnik Mat. Ser. III 20 (1985), 443-449.
- 3. R. L. Blair, L. T. Polkowski, and M. A. Swardson, On barely α -compact spaces (in preparation).
- 4. W. W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Grundlehren Math. Wiss. Vol. 211, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- W. W. Comfort and T. Retta, Generalized perfect maps and a theorem of I. Juhász, Rings of Continuous Functions, Lecture Notes in Pure and Appl. Math., Vol. 95, Marcel Dekker, New York-Basel, 1985, pp. 79-102.
- 6. E. K. van Douwen, *Remote points*, Dissertationes Math. (Rozprawy Mat.) 188, PWN, Warsaw, 1981.
- 7. A. Dow, A separable space with no remote points, Trans. Amer. Math. Soc. 312 (1989) 335-353.
- 8. R. Engelking, General topology, PWN, Warsaw, 1975; English transl., PWN, Warsaw, 1977.
- 9. Z. Frolík, On almost realcompact spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 9 (1961), 247-250.
- 10. _____, A generalization of realcompact spaces, Czechoslovak Math. J. 13 (1963) 127-138.
- 11. L. Gillman and M. Jerison, Rings of continuous functions, Univ. Ser. Higher Math., Van Nostrand, Princeton, 1960; Springer-Verlag, New York-Heidelberg-Berlin, 1976.
- 12. H. Herrlich, Fortsetzbarkeit stetiger Abbildungen und Kompaktheitsgrad topologischer Räume, Math. Z. 96 (1967), 64-72.
- 13. M. A. Swardson, A generalization of F-spaces and some topological characterizations of GCH, Trans. Amer. Math. Soc. 279, (1983) 661–675.
- 14. T. Terada, On remote points in $vX \setminus X$, Proc. Amer. Math. Soc. 77 (1979), 264–266.
- 15. R. G. Woods, A survey of absolutes of topological spaces, Topological Structures II, Part 2 (Proc. Symp. Amsterdam, October 31-November 2, 1978), Math. Centre Tracts, no. 116, Math. Centrum, Amsterdam, 1979, pp. 324-362.