ON BARELY α-COMPACT SPACES AND REMOTE POINTS IN $\beta_{\alpha}X \setminus X$

ROBERT L. BLAIR *, LECH T. POLKOWSKI, AND MARY ANNE SWARDSON

(Communicated by Dennis Burke)

Abstract. Let X be a Tychonoff space. It was proved by Terada that if the cellularity of X is not Ulam-measurable, then no point of $\nu X \setminus X$ is a remote point of X. In this paper we generalize this result by proving that if X is barely α-compact, then no point in $\beta_{\alpha}X \setminus X$ is an α-exotic point of X. This implies, in particular, that if no cellular family in X has a α-measurable cardinality, then no point of $\beta_{\alpha}X \setminus X$ is a remote point of X; the Terada theorem then follows as a corollary when $\alpha = \omega_1$.

1. Introduction and preliminaries

By a space we will always mean a Tychonoff space, and α and κ will always denote infinite cardinals. By a mapping we will always mean a continuous mapping.

A subset A of a space X is regular closed if $A = \text{cl}_X \text{int}_X A$. The set $RC(X)$ of regular closed subsets of X is a complete Boolean algebra when ordered by inclusion, and if $\mathcal{E} \subset RC(X)$, then $\bigwedge \mathcal{E} = \text{cl}_X \text{int}_X \bigcap \mathcal{E}$. A filter \mathcal{F} of $RC(X)$ is a family $\mathcal{F} \subset RC(X)$ such that $\bigwedge \mathcal{E} \in \mathcal{F}$ for every finite $\mathcal{E} \subset \mathcal{F}$, $\emptyset \notin \mathcal{F}$ and $B \in \mathcal{F}$ whenever $A \in \mathcal{F}$ and $A \subset B \in RC(X)$. A filter \mathcal{F} of $RC(X)$ is α-complete if $\bigwedge \mathcal{E} \neq \emptyset$ for every $\mathcal{E} \subset \mathcal{F}$ such that $|\mathcal{E}| < \alpha$.

A family \mathcal{A} of sets has the α-intersection property if $\bigcap \mathcal{B} \neq \emptyset$ for every $\mathcal{B} \subset \mathcal{A}$ such that $|\mathcal{B}| < \alpha$. A family \mathcal{A} with the ω-intersection property is said to be finitely centered. The family \mathcal{A} is free if $\bigcap \mathcal{A} = \emptyset$; otherwise \mathcal{A} is fixed. A family \mathcal{A} of subsets of a space X converges to a point $p \in X$ if every neighborhood of p contains a member of \mathcal{A}; a point $q \in X$ is a cluster point of \mathcal{A} if $q \in cl_X A$ for every $A \in \mathcal{A}$.

Received by the editors May 22, 1987, and in revised form, December 3, 1987. This paper was presented at the Spring Topology Conference, University of Southwestern Louisiana, April 3-5, 1986.

* Robert L. Blair died on November 18, 1988 after an extended illness.

1980 Mathematics Subject Classification (1985 Revision). Primary 54D40, 54D60; Secondary 54A25, 54G05.

Key words and phrases. Čech-Stone compactification, α-compactification, realcompactification, barely α-compact space, remote point, α-exotic point, regular closed set, cellular family, measurable cardinal, absolute.

©1989 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For a space X, we denote by X^* the subspace $\beta X \setminus X$ of the Čech-Stone compactification βX of X. A point $p \in X^*$ is a remote point of X if $p \notin \text{cl}_{\beta X} D$ for every nowhere dense subset D of X (see van Douwen [6] for a detailed discussion of remote points).

We denote by $\mathcal{Z}(X)$ the set of zero-sets in X. The α-compactification $\beta_\alpha X$ of X is defined as $\beta_\alpha X = \{ p \in \beta X :$ the ultrafilter of $\mathcal{Z}(X)$ which converges to p has the α-intersection property}, and X is α-compact in the sense of Herrlich [12] if $X = \beta_\alpha X$ (see Comfort-Retta [5] for a detailed discussion of α-compact spaces). In particular, the ω_1-compact spaces are the realcompact spaces and the ω_1-compactification of X is the Hewitt realcompactification νX of X (see Gillman-Jerison [11] for the most important properties of realcompact spaces and realcompactifications).

A cellular family in X is a family of pairwise disjoint nonempty open subsets of X, and the cellularity $c(X)$ of X is defined as $c(X) = \sup\{|\mathcal{A}| : \mathcal{A} \text{ is a cellular family in } X\} + \omega$ (see, e.g., Engelking [8, 1.7.12]).

A cardinal κ is measurable if there exists a free ultrafilter on the set κ with the κ-intersection property (see, e.g., Comfort-Negrepontis [4, p. 186]). For a cardinal α, we denote by $m(\alpha)$ the first measurable cardinal $\geq \alpha$ (if it exists); a cardinal κ is α-measurable if $\kappa \geq m(\alpha)$ (equivalently, there is a free ultrafilter on the set κ with the α-intersection property), and the ω_1-measurable cardinals are the Ulam-measurable cardinals (Comfort-Negrepontis [4, p. 196]). It is consistent with the axioms of ZFC that there are no measurable cardinals, but it is not known whether the axioms of ZFC imply that there are not any.

A space X is said to be barely α-compact if every α-complete ultrafilter of $RC(X)$ is fixed. General barely α-compact spaces are studied in Blair-Polkowski-Swardson [3]; as noticed therein, they extend the class of almost α-compact spaces introduced in Frolik ([9], [10]) in case $\alpha = \omega_1$ and in Bhaumik-Misra [1] in case $\alpha \neq \omega_1$. In particular, every α-compact space is barely α-compact.

We say that a point $p \in X^*$ is an α-exotic point of X if $\bigwedge \mathcal{E} \neq \emptyset$ whenever $\mathcal{E} \subset RC(X)$ is such that $|\mathcal{E}| < \alpha$, $\bigwedge \mathcal{H} \neq \emptyset$ for every finite $\mathcal{H} \subset \mathcal{E}$, and p is a cluster point of \mathcal{E} in βX.

Our main results are that if X is barely α-compact, then there is no α-exotic point of X in X^* (2.7), that every X with the property that no cellular family in X has α-measurable cardinality is barely α-compact (2.11), and that every remote point of X in $\beta_\alpha X \setminus X$ is α-exotic (3.1). They imply, in particular, that if no cellular family in X has α-measurable cardinality, then no point of $\beta_\alpha X \setminus X$ is a remote point of X (3.2). When $\alpha = \omega_1$, this last statement implies the following theorem of Terada [14, p. 264]: If $c(X)$ is not Ulam-measurable, then no point of $\nu X \setminus X$ is a remote point of X (3.3).

We do not discuss in this paper some other interesting questions concerning α-exotic points that are suggested by known properties of remote points; they will be discussed elsewhere.
We would also like to mention a recent paper by Dow [7], where an independent extension of the Terada theorem is given.

2. BARELY α-COMPACT SPACES AND α-EXOTIC POINTS

We begin with a well-known property of regular closed sets.

2.1. Lemma. If D ⊆ X is a dense subset of X, then the mapping A ↦ cl_\alpha A is a Boolean algebra isomorphism of RC(D) onto RC(X), with the inverse isomorphism given by A ↦ A ∩ D.

We rely on the following properties of filters of RC(X):

2.2. Lemma. If X and T are spaces, X ⊆ T and SF is a filter of RC(X), then (a) and (b), below, are equivalent for every p ∈ T:

(a) p is a cluster point of SF;
(b) there exists an ultrafilter \mathcal{U} of RC(X) such that SF ⊆ \mathcal{U} and \mathcal{U} converges to p.

Proof. Clearly, (b) implies (a). Assume (a) and let \mathcal{V} = \{V: V is a closed neighborhood of p in T\} and \mathcal{V}' = \{cl_\alpha (X ∩ \text{int}_T V): V ∈ \mathcal{V}\}. Then \mathcal{I} ∪ \mathcal{V}' is finitely centered in RC(X) and thus there exists an ultrafilter \mathcal{U} of RC(X) such that \mathcal{I} ∪ \mathcal{V}' ⊆ \mathcal{U}. Clearly, \mathcal{U} converges to p.

2.3. Corollary. If \mathcal{F} is an ultrafilter of RC(X), then \mathcal{F} converges to some p ∈ βX and, conversely, for each p ∈ βX there exists an ultrafilter \mathcal{F} of RC(X) which converges to p.

We let b_\alpha X = X ∪ \{p ∈ X^* : there exists an \alpha-complete ultrafilter of RC(X) which converges to p\}.

2.4. Proposition. (a) b_\alpha X is barely \alpha-compact;
(b) b_\alpha X is the smallest barely \alpha-compact subspace of βX which contains X;
(c) X is barely \alpha-compact if and only if X = b_\alpha X.

Proof. By 2.1 and 2.3, if \mathcal{F} is an \alpha-complete ultrafilter of RC(b_\alpha X), then \mathcal{F}|X = \{F ∩ X: F ∈ \mathcal{F}\} is an \alpha-complete ultrafilter of RC(X) and hence \mathcal{F}|X converges to some p ∈ βX. Thus p ∈ b_\alpha X and we have \cap \mathcal{F} = \{p\} ≠ ∅. It follows that b_\alpha X is barely \alpha-compact. Assume, now, that X ⊆ T ⊆ βX and that T is barely \alpha-compact. Let p ∈ b_\alpha X. There exists an \alpha-complete ultrafilter \mathcal{F} of RC(X) which converges to p. By 2.1, again, \mathcal{F} = \{cl_\alpha F: F ∈ \mathcal{F}\} is an \alpha-complete ultrafilter of RC(T) and, by 2.2, \mathcal{F} converges to some q ∈ T. Clearly, q = p and thus p ∈ T. It follows that b_\alpha X ⊆ T, which proves (b). Clearly, (b) implies (c).

A space X is extremally disconnected if, for every open set U ⊆ X, the closure cl_X U is open in X (see e.g., Engelking [8, p. 452]). A space X is extremally disconnected at a point p ∈ X if p ∈ cl_X U ∩ cl_X W implies
that \(U \cap W \neq \emptyset \) for each pair \(U, W \) of open subsets of \(X \) (van Douwen [6, 1.7]); clearly, \(X \) is extremally disconnected if and only if \(X \) is extremally disconnected at each of its points. We recall that \(\beta X \) is extremally disconnected whenever \(X \) is extremely disconnected (see, e.g., Engelking [8, 6.2.27]). For an open subset \(U \) of \(X \), we let \(\text{Ex}_X U = \beta X \setminus \text{cl}_{\beta X}(X \setminus U) \) (see van Douwen [6, 3.1, 3.2] for properties of the operator \(\text{Ex}_X \)).

2.5. **Lemma.** Suppose that \(\beta X \) is extremally disconnected at a point \(p \in \beta X \). If \(p \) is a cluster point of a family \(\mathcal{G} \subseteq RC(X) \), then \(p \in \text{cl}_{\beta X} \bigcap \mathcal{H} \) for every finite \(\mathcal{H} \subseteq \mathcal{G} \); in particular, there exists a unique ultrafilter of \(RC(X) \) which converges to \(p \).

Proof. Because of Lemma 2.2, it is sufficient to observe that as \(\beta X \) is extremally disconnected at \(p \), if

\[
p \in \text{cl}_{\beta X} U_1 \cap \text{cl}_{\beta X} U_2 \cap \cdots \cap \text{cl}_{\beta X} U_n,
\]

then

\[
p \in \text{cl}_{\beta X}(U_1 \cap U_2 \cap \cdots \cap U_n)
\]

for every family \(\{U_1, U_2, \ldots, U_n\} \) of open subsets of \(X \).

2.6. **Proposition.** For every \(p \in X^* \), (a), below, implies (b), and (a) and (b) are equivalent in case \(\beta X \) is extremally disconnected at \(p \):

(a) \(p \) is \(\alpha \)-exotic;

(b) if \(p \) is a cluster point of a filter \(\mathcal{F} \) of \(RC(X) \), then \(\mathcal{F} \) is \(\alpha \)-complete; in particular, if \(\mathcal{F} \) is an ultrafilter of \(RC(X) \) that converges to \(p \), then \(\mathcal{F} \) is \(\alpha \)-complete.

Proof. Clearly, (a) implies (b), and 2.2 and 2.5 imply that (a) follows from (b) when \(\beta X \) is extremally disconnected at \(p \).

Our main result can now be stated as follows:

2.7. **Theorem.** (a), below, implies (b), and (a) and (b) are equivalent in case \(X \) is extremally disconnected:

(a) \(X \) is barely \(\alpha \)-compact;

(b) no point of \(X^* \) is an \(\alpha \)-exotic point of \(X \).

Proof. To prove that (a) implies (b), assume that \(p \in X^* \) is an \(\alpha \)-exotic point of \(X \). By 2.3 and 2.6 there exists an \(\alpha \)-complete ultrafilter of \(RC(X) \) that converges to \(p \), and thus, by 2.4(c), \(X \) is not barely \(\alpha \)-compact. Assume, now, that \(X \) is extremally disconnected and \(X \) is not barely \(\alpha \)-compact. By 2.4(c), there exists \(p \in b_{\alpha} X \setminus X \) and thus there exists an \(\alpha \)-complete ultrafilter of \(RC(X) \) which converges to \(p \). By 2.5 and 2.6, \(p \) is \(\alpha \)-exotic.

We denote by \(E(X) \) the absolute of \(X \), and by \(k_X \) a perfect irreducible mapping of \(E(X) \) onto \(X \) (see Woods [15] for a survey of absolutes); we recall that \(E(X) \) is extremally disconnected (see, e.g., Woods [15, Theorem 2.1]). Clearly, \(c(X) = c(E(X)) \).
For a mapping \(f: X \to Y \), we denote by \(\beta f: \beta X \to \beta Y \) the Stone extension of \(f \).

2.8. Lemma (cf. Woods [15, 2.3]). If \(f: Z \to Y \) is a closed irreducible mapping of \(Z \) onto \(Y \), then \(A \mapsto f(A) \) is a Boolean algebra isomorphism of \(RC(Z) \) onto \(RC(Y) \).

2.9. Proposition. Let \(f: Z \to Y \) be a closed irreducible mapping of \(Z \) onto \(Y \). Then \(p \in b_a Y \) if and only if \(p = \beta f(q) \) for some \(q \in b_a Z \); that is, \(b_a Y = f(b_a Z) \).

Proof. By 2.8, \(\mathcal{F} \) is an \(\alpha \)-complete ultrafilter of \(RC(Y) \) if and only if \(\mathcal{F} = f(\mathcal{Z}) \) (\(= \{ f(A): A \in \mathcal{Z} \} \)) for some \(\alpha \)-complete ultrafilter \(\mathcal{Z} \) of \(RC(Z) \). Clearly, \(\mathcal{Z} \) converges to a point \(z \in \beta Z \) if and only if \(\mathcal{F} = f(\mathcal{Z}) \) converges to \(\beta f(z) \). It follows that \(p \in b_a Y \) if and only if \(p = \beta f(q) \) for some \(q \in b_a Z \).

Propositions 2.4(c) and 2.9, along with the fact that \(k_X: E(X) \to X \) is perfect irreducible, imply the following:

2.10. Corollary. \(X \) is barely \(\alpha \)-compact if and only if \(E(X) \) is barely \(\alpha \)-compact.

We can now prove the next result, which will provide (in 3.2 and 3.3) a link between the case \(\alpha = \omega_1 \) of 2.7 and the Terada theorem:

2.11. Theorem. If no cellular family in \(X \) has \(\alpha \)-measurable cardinality, then \(X \) is barely \(\alpha \)-compact.

Proof. By 2.10, it is sufficient to prove the theorem in case \(X \) is extremally disconnected, and in this case it is sufficient, by 2.7, to prove that no point of \(X^* \) is an \(\alpha \)-exotic point of \(X \). Assume, on the contrary, that \(p \in X^* \) is an \(\alpha \)-exotic point of \(X \). Consider a maximal cellular family \(\mathcal{U} \) in \(X \) with the property that \(p \notin \cl_{\beta X} U \) for every \(u \in \mathcal{U} \) (cf. the proof of the Theorem in Terada [14, p. 264]). Note that \(\bigcup \mathcal{U} \) is dense in \(X \) and let \(\mathcal{W} = \{ V \subseteq \mathcal{U}: p \in \cl_{\beta X} \bigcup V \} \). By the proof of 2.5, \(\mathcal{W} \) is a filter (in fact, an ultrafilter) on \(\mathcal{U} \), and clearly \(\mathcal{W} \) is free. Let \(\mathcal{A} \subseteq \mathcal{W} \) with \(|\mathcal{A}| < \alpha \) and let \(\mathcal{E} = \{ \cl_X \bigcup V : V \in \mathcal{A} \} \). Since \(p \) is \(\alpha \)-exotic, 2.6 yields \(\bigwedge \mathcal{E} \neq \emptyset \); and then, since \(\bigcup \mathcal{U} \) is dense in \(X \), it follows that \(\bigcap \mathcal{A} \neq \emptyset \). Thus \(\mathcal{W} \) has the \(\alpha \)-intersection property, so \(|\mathcal{W}| \) is \(\alpha \)-measurable, a contradiction.

3. Remote points in \(\beta_\alpha X \setminus X \)

Our main result in this section is the following:

3.1. Theorem. Every remote point of \(X \) in \(\beta_\alpha X \setminus X \) is an \(\alpha \)-exotic point of \(X \).
Proof. Let \(p \in \beta_nX \setminus X \) be a remote point of \(X \). As \(X \) is extremally disconnected at \(p \) (see van Douwen [6, 5.2]), it follows from 2.5 and 2.6 that it is sufficient to prove that the unique ultrafilter \(\mathcal{F} \) of \(RC(X) \) which converges to \(p \) is \(\alpha \)-complete. Now, let \(\mathcal{E} \subset \mathcal{F} \) with \(|\mathcal{E}| < \alpha \). For every \(A \in \mathcal{E} \), as \(p \in cl_{\beta_X} int_X A \) and \(p \) is a remote point of \(X \), we have \(p \in Ex_X int_X A \) (see van Douwen [6, 5.1(b)]). For each \(A \in \mathcal{E} \), select a zero-set neighborhood \(Z_A \) of \(p \) in \(\beta_X int_X A \) such that \(Z_A \subset Ex_X int_X A \). As \(\{|Z_A|: A \in \mathcal{E}\} < \alpha \), and \(p \in cl_{\beta_X} (Z_A \cap X) \), hence \(p \in \beta_nX \cap cl_{\beta_X} (Z_A \cap X) = cl_{\beta_nX} (Z_A \cap X) \) for every \(A \in \mathcal{E} \), we have \(p \in \bigcap_{A \in \mathcal{E}} cl_{\beta_nX} (Z_A \cap X) \). Thus
\[
p \in \bigcap_{A \in \mathcal{E}} (X \setminus Ex_X int_X A) = \bigcap_{A \in \mathcal{E}} (int_X A) \subset cl_{\beta_X} \bigcap_{A \in \mathcal{E}} \mathcal{E}.
\]
As \(p \) is a remote point of \(X \), \(int_X \mathcal{E} \neq \emptyset \) and thus \(\bigcap \mathcal{E} \neq \emptyset \). It follows that \(\mathcal{F} \) is \(\alpha \)-complete and thus \(p \) is an \(\alpha \)-exotic point of \(X \).

Theorems 2.7, 2.11 and 3.1 imply the following:

3.2. Corollary. If \(X \) is barely \(\alpha \)-compact (in particular, if no cellular family in \(X \) has \(\alpha \)-measurable cardinality), then no point in \(\beta_nX \setminus X \) is a remote point of \(X \).

3.3. Corollary (Terada [14]). If \(c(X) \) is not Ulam-measurable, then no point of \(\nu_X \setminus X \) is a remote point of \(X \).

3.4. Remark. Since every zero-set of \(X \) is a \(G_\delta \) in \(X \), one can use 2.6 to prove that if \(p \in X^* \) is \(\alpha \)-exotic and \(\mathcal{F} \) is the ultrafilter of \(\mathcal{E}(X) \) converging to \(p \), then \(int_X \mathcal{F} \neq \emptyset \) for every \(\mathcal{H} \subset \mathcal{F} \) such that \(|\mathcal{H}| < \alpha \); a fortiori, \(p \in \beta_nX \setminus X \).

3.5. Remarks. (1) The Alexandroff compactification of the discrete space \(D(\kappa) \) of cardinality \(\kappa \), where \(\kappa \geq m(\alpha) \), is barely \(\alpha \)-compact and has cellularity \(\geq m(\alpha) \). Thus, the converse of 2.11 is not true.

(2) Assume that \(\kappa \) has its natural order topology and that \(cf(\kappa) > \omega \) (so that \(\kappa^* = \{\kappa\} \)). Express the set \(D \) of successor ordinals of \(\kappa \) as \(\bigcup_{n \in \omega} D_n \), where the \(D_n \)'s are pairwise disjoint and cofinal in \(\kappa \), and let \(\mathcal{E} = \{cl_{\kappa} \bigcup_{m \geq n} D_n: n \in \omega\} \). Then \(\mathcal{E} \) is a subset of \(RC(\kappa) \) that witnesses that \(\kappa \) is not an \(\omega_1 \)-exotic (and hence not an \(\alpha \)-exotic) point of \(\kappa \). Assume, further, that \(\kappa = m(\alpha) \). Then \(D \) is not \(\alpha \)-compact (since \(|D| = m(\alpha) \) [5, 5.3]), and hence there is a free \(\alpha \)-complete ultrafilter \(\mathcal{F} \) on \(D \). By 2.1, \(\mathcal{F}' = \{cl_{\kappa} A: A \in \mathcal{F}\} \) is an \(\alpha \)-complete ultrafilter of \(RC(\kappa) \). Since \(\mathcal{F}' \) is easily seen to be free, \(\kappa \) is not barely \(\alpha \)-compact, and thus (a) and (b) of 2.7 are, in general, not equivalent.

(3) The space \(X = \beta_n D(\kappa) \setminus \{p\} \), where \(\kappa \geq m(\alpha) \) and \(p \) is the limit point in \(\beta D(\kappa) \) of a free \(\alpha \)-complete ultrafilter on \(D(\kappa) \), has no remote point in \(\beta_nX \setminus X = \{p\} \), while \(p \) is an \(\alpha \)-exotic point of \(X \). Thus, the converse of 3.1 does not hold.
(4) One can show that if \(p \in X^* \) is an \(\alpha \)-exotic point of \(X \) and \(k_X(q) = p \)
for some \(q \in E(X)^* \), then \(q \) is an \(\alpha \)-exotic point of \(E(X)^* \). The mapping
\(k_\kappa : E(\kappa) \to \kappa \), where \(\kappa \) is as in (2), above, does not preserve \(\alpha \)-exotic points.
(By 2.10 and (2), \(E(\kappa) \) is not barely \(\alpha \)-compact, and thus by 2.7 there are
\(\alpha \)-exotic points of \(E(\kappa) \) in \(E(\kappa)^* \), while there are no \(\alpha \)-exotic points of \(\kappa \) in
\(\kappa^* \).

(5) A subset \(S \subset X \) is cellularly embedded in \(X \) (Swardson [13, p. 664]) if every cellular
family in \(S \) can be extended to a cellular family in \(X \). In Blair [2, 2.3], the Terada theorem was
strengthened in yet another direction by showing that if no closed discrete cellularly embedded
subset of \(X \) has Ulam-measurable cardinality, then no point of \(vX \setminus X \) is a remote point of \(X \). Let
us observe that this last statement has no counterpart for \(\alpha \)-exotic points: every
closed discrete subset of the space \(X \) in (3), is finite, and yet there is an \(\alpha \)-exotic
point of \(X \) in \(X^* \).

References

12. H. Herrlich, Fortsetzbarkeit stetiger Abbildungen und Kompaktheitsgrad topologischer Räume,
13. M. A. Swardson, A generalization of \(F \)-spaces and some topological characterizations of GCH,

Department of Mathematics, Ohio University, Athens, Ohio 45701