Combinatorial multinomial matrices and multinomial Stirling numbers
HTML articles powered by AMS MathViewer
- by Daniel S. Moak PDF
- Proc. Amer. Math. Soc. 108 (1990), 1-8 Request permission
Abstract:
Fred C. Barnett and James R. Weaver considered the stochastic matrix (1) \[ {\left [ {\left ( {\begin {array}{*{20}{c}} n \\ j \\ \end {array} } \right ){{\left ( {\frac {{n - i}}{n}} \right )}^{n - j}}{{\left ( {\frac {i}{n}} \right )}^j}} \right ]_{i,j = 0, \ldots ,n}}\] when modeling the spread of a viral infection through a population, where the virus has two forms. This can be generalized to viruses with $q$ forms using the matrix (2) \[ {\left [ {\left ( {\begin {array}{*{20}{c}} n \\ {{\beta _1},{\beta _2}, \ldots ,{\beta _q}} \\ \end {array} } \right ){{\left ( {\frac {{{\alpha _1}}}{n}} \right )}^{{\beta _1}}}{{\left ( {\frac {{{\alpha _2}}}{n}} \right )}^{{\beta _2}}} \cdots {{\left ( {\frac {{{\alpha _q}}}{n}} \right )}^{{\beta _q}}}} \right ]_{{\alpha _1} + {\alpha _2} + \cdots + {\alpha _q} = n,{\beta _1} + {\beta _2} + \cdots + {\beta _q} = n}}\] These matrices also appear in a different context when Konrad J. Heuvers, et al, studied the characterization of the permanent function by the Cauchy-Binet formula. In this paper, the eigenvalues and inverse of the matrix (2) are given and the existence of a basis of right eigenvectors is established. In the process the inverse of a generalized multinomial coefficient matrix is found.References
- Fred C. Barnett, James R. Weaver, and J. S. Frame, Eigenvalues and eigenvectors of a certain stochastic matrix, Linear and Multilinear Algebra 13 (1983), no. 4, 345–350. MR 704783, DOI 10.1080/03081088308817533
- Daniel I. A. Cohen, Basic techniques of combinatorial theory, John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR 533589
- Konrad J. Heuvers, L. J. Cummings, and K. P. S. Bhaskara Rao, A characterization of the permanent function by the Binet-Cauchy theorem, Linear Algebra Appl. 101 (1988), 49–72. MR 941295, DOI 10.1016/0024-3795(88)90142-5
- John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725
- Robert Shelton, Konrad J. Heuvers, Daniel Moak, and K. P. S. Bhaskara Rao, Multinomial matrices, Discrete Math. 61 (1986), no. 1, 107–114. MR 850935, DOI 10.1016/0012-365X(86)90033-6
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 1-8
- MSC: Primary 05A10; Secondary 15A15, 39B60, 92A15
- DOI: https://doi.org/10.1090/S0002-9939-1990-0965944-4
- MathSciNet review: 965944