Two classes of Fréchet-Urysohn spaces
HTML articles powered by AMS MathViewer
- by Alan Dow PDF
- Proc. Amer. Math. Soc. 108 (1990), 241-247 Request permission
Abstract:
Arhangel’skii introduced five classes of spaces, ${\alpha _i}$-spaces $\left ( {i < 5} \right )$, which are important in the study of products of Fréchet-Urysohn spaces. For each $i < 5$, each ${\alpha _i}$-space is an ${\alpha _{i + 1}}$-space and it follows from the continuum hypothesis that there are countable ${\alpha _{i + 1}}$-spaces which are not ${\alpha _i}$-spaces. A $v$-space ($w$-space) is a Fréchet-Urysohn ${\alpha _1}$-space (${\alpha _2}$-space). We show that there is a model of set theory in which each ${\alpha _2}$-space ($w$-space) is an ${\alpha _1}$-space ($v$-space).References
- A. V. Arhangel′skiÄ, Frequency spectrum of a topological space and classification of spaces, Dokl. Akad. Nauk SSSR 206 (1972), 265–268 (Russian). MR 0394575 —, The frequency spectrum of a topological space and the product operation, Trudy Mosk. Mat. Obs. 40 (1979) = Transl. Moscow Math. Soc. (1981), Issue 2, 163-200. A. Dow and J. Steprans.
- Gary Gruenhage, Infinite games and generalizations of first-countable spaces, General Topology and Appl. 6 (1976), no. 3, 339–352. MR 413049
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416 R. Levy and P. Nyikos, Families in $\beta \omega$ whose union is regular open, preprint.
- Tsugunori Nogura, A counterexample for a problem of Arhangel′skiÄ concerning the product of FrĂ©chet spaces, Topology Appl. 25 (1987), no. 1, 75–80. MR 874979, DOI 10.1016/0166-8641(87)90076-9 P. Nyikos, ${}^\omega \omega$ and the FrĂ©chet-Urysohn property, in preparation. —, The Cantor tree and the FrĂ©chet-Urysohn property, preprint, 1987.
- Roy C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, General Topology and Appl. 4 (1974), 1–28. MR 365463
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955 —, Cardinal invariants of the continuum, Axiomatic Set Theory, Eds. J. Baumgartner, D. A. Martin, S. Shelah, Contemp. Math. Amer. Math. Soc., Providence, R.I., 1986.
- P. L. Sharma, Some characterizations of $W$-spaces and $w$-spaces, General Topology Appl. 9 (1978), no. 3, 289–293. MR 510910, DOI 10.1016/0016-660x(78)90032-6
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 241-247
- MSC: Primary 54E35; Secondary 03E35, 03E75, 54A35
- DOI: https://doi.org/10.1090/S0002-9939-1990-0975638-7
- MathSciNet review: 975638