TWO CLASSES OF FRÉCHET-URYSOHN SPACES

ALAN DOW

(Communicated by Dennis Burke)

Abstract. Arhangel'skii introduced five classes of spaces, \(\alpha_i \)-spaces \((i < 5)\), which are important in the study of products of Fréchet-Urysohn spaces. For each \(i < 5 \), each \(\alpha_i \)-space is an \(\alpha_{i+1} \)-space and it follows from the continuum hypothesis that there are countable \(\alpha_{i+1} \)-spaces which are not \(\alpha_i \)-spaces. A \(\nu \)-space (\(\omega \)-space) is a Fréchet-Urysohn \(\alpha_1 \)-space (\(\alpha_2 \)-space). We show that there is a model of set theory in which each \(\alpha_2 \)-space (\(\omega \)-space) is an \(\alpha_1 \)-space (\(\nu \)-space).

Introduction

Arhangel'skii defines a point \(x \in X \) to be an \(\alpha_1 \)-point (\(\alpha_2 \)-point) if whenever \(F_n \) is a sequence converging to \(x \), for each \(n < \omega \), there is a sequence \(F \) converging to \(x \) such that \(F_n - F \) is finite (\(F_n \cap F \) is infinite) for each \(n < \omega \). Furthermore a point is called an \(\alpha_0 \)-point if it has a countable neighbourhood base. A space is called an \(\alpha_1 \)-space if each point is an \(\alpha_1 \)-point. A space is Fréchet-Urysohn if whenever a point is in the closure of a set there is a sequence from it converging to the point.

Nyikos has shown that there is a countable \(\omega \)-space which is not first countable [Ny1, Ny2]. In [Ny2] Nyikos asks if there is a countable \(\omega \)-space which is not a \(\nu \)-space and a countable \(\nu \)-space which is not first-countable. Nyikos [Ny2] produces examples of countable \(\omega \)-spaces which are not \(\nu \)-spaces from a special set-theoretic assumption following from, for example, Martin's Axiom (even \(b < d \)). Nogura [N] has shown that MA (even \(b = d \)) implies there is an example of a countable \(\nu \)-space which is not first countable. It is shown in [DS] that it is consistent that each countable \(\nu \)-space is first-countable.

Gruenhage [G] introduced \(\nu \)-spaces and Sharma [Sh] obtained their characterization in terms of \(\alpha_2 \)-spaces. The term \(\nu \)-space seems to be due to Nyikos.

Received by the editors July 18, 1988 and, in revised form, December 2, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 54E35.

Key words and phrases. Fréchet-Urysohn space, \(\nu \)-space, \(\omega \)-space.

This research was supported by NSERC of Canada.
\(\omega\)-SPLITTING FAMILIES FROM \(\alpha_2\)-POINTS

1. Definition. We say that \(\mathcal{X} \subseteq [\omega]^\omega\) is \(\omega\)-splitting if for each countable family \(\{A_n : n \in \omega\} \subseteq [\omega]^\omega\) there is an \(X \in \mathcal{X}\) such that \(|A_n \cap X| = |A_n - X|\) for each \(n \in \omega\). We shall say that \(X\) is \(M\)-splitting if \(|A \cap X| = |A - X|\) for each \(A \in M \cap [\omega]^\omega\).

Let \(x\) be a point in a space \(Y\) and suppose \(F_n \in [Y]^\omega\) is a sequence converging to \(x\) for each \(n \in \omega\). Identify \(\bigcup F_n\) with \(\omega\) and define \(\mathcal{X}\) to be the set of \(X\) which “think” that \(x\) is an \(\alpha_1\)-point. That is, define \(\mathcal{X}(x, \langle F_n \rangle) = \{X \subseteq [\omega] : \exists F \subseteq Y. (F\text{ converges to }x \text{ and } (X \cap F_n) - F\text{ is finite for each }n \in \omega)\}\). The definition of \(\mathcal{X}(x, \langle F_n \rangle)\) of course depends on the identification of \(\bigcup F_n\) with \(\omega\), but only up to a permutation on \(\omega\) and this will never matter to us.

2. Lemma. If \(F_n \in [Y]^\omega\) \((n \in \omega)\) converges to an \(\alpha_2\)-point \(x\), then \(\mathcal{X} = \mathcal{X}(x, \langle F_n \rangle)\) is an \(\omega\)-splitting family.

Proof. Assume that \(\bigcup F_n\) is identified with \(\omega\) and let \(\{A_k : k \in \omega\} \subseteq [\omega]^\omega\). Let \(I = \{j \in \omega : A_j \cap F_n\text{ is finite for each }n\}\). Choose for each \(n\), a finite subset \(H_n\) of \(F_n \cup \bigcup_{m < n} F_m\) so that \(A_j - H\text{ is finite for each }j \in I\text{ where }H = \bigcup H_n\). Now for each \(j \in \omega - I\), choose \(n_j \in \omega\) so that \(A_j \cap F_{n_j}\) is infinite. Now choose an infinite \(B_j \subseteq A_j \cap F_{n_j}\) so that \(B_j \cap B_k = \emptyset\) for \(j \neq k\) in \(\omega - I\). Now since \(x\) is an \(\alpha_2\)-point, there is a sequence \(F\) converging to \(x\) such that \(F \cap B_j\) is infinite for each \(j \in \omega - I\). It follows that \(F \cup H\) hits each \(A_j\) in an infinite set and that \(F \cup H \in \mathcal{X}\). Finally any infinite subset of \(F \cup H\) is a member of \(\mathcal{X}\) hence there is an \(X \in \mathcal{X}\) which splits \(\{A_k : k \in \omega\}\).

3. Lemma. If every \(\omega\)-splitting family contains an \(\omega\)-splitting family of cardinality less than \(b\), then each \(\alpha_2\)-point is an \(\alpha_1\)-point.

Proof. Let \(x\) be an \(\alpha_2\)-point of a space \(Y\) and assume \(F_n\) is a sequence converging to \(x\) for each \(n \in \omega\). Since we wish to show that \(x\) is an \(\alpha_1\)-point we may assume that the \(F_n\)'s are pairwise disjoint and that \(\bigcup F_n = \omega\). Let \(\mathcal{X} = \mathcal{X}(x, \langle F_n \rangle)\) be defined as above. By Lemma 2 and the hypothesis of this lemma, there is an \(\omega\)-splitting family \(\mathcal{X}' \subseteq [\mathcal{X}]^{<b}\). For each \(A \in \mathcal{X}'\), choose \((\text{by the definition of }\mathcal{X})\) a sequence \(F_A\) converging to \(x\) and \(f_A \in [\omega]^{<\omega}\) so that \((A \cap F_n) - f_A \subseteq f_A(n)\) for each \(n \in \omega\). Now choose \(f \in [\omega]^{<\omega}\) so that \(f_A <^* f\) for each \(A \in \mathcal{X}'\) which we may do since \(|\mathcal{X}'| < b\). We claim that \(F = \bigcup F_n - f(n)\) converges to \(x\), which would show that \(x\) is an \(\alpha_1\)-point. Indeed, assume \(F\) does not converge to \(x\) and choose \(F' \in [F]^\omega\) such that \(x\) is not a limit point of \(F'\). Since \(\mathcal{X}'\) is splitting, choose \(A \in \mathcal{X}'\) so that \(A \cap F'\) is infinite. However this contradicts that \(F_A\) converges to \(x\) since \(A \cap F' - F_A\) is finite.
4. **Remark.** We could replace the notion of \(\omega \)-splitting in Lemma 3 by what one might call “\(\omega \)-hitting”.

\(\omega \)-splitting families and Laver forcing

5. **Theorem.** In a model obtained by adding \(\omega_2 \)-Laver reals to a model of CH, every \(\omega \)-splitting family contains an \(\omega \)-splitting family of cardinality \(\omega_1 \). Hence in this model each \(\alpha_2 \)-space (\(w \)-space) is an \(\alpha_1 \)-space (\(v \)-space).

The theorem follows from the following four results. Proposition 6 is a collection of standard facts about Laver forcing, Lemma 7 is a standard reflection argument, Lemma 8 is a special case of a general preservation scheme proven in [S2] and Lemma 9 is new. Recall that \(T \subseteq \text{L} \) (the Laver poset defined in [L]) if \(T \subseteq \text{cf} \omega \) has a root \(t_0 = \text{root}(T) \) and for \(t_0 \leq t \in T \) \(\{ n : \text{f}^t n \in T \} \) is infinite. \(\text{L} \) is ordered by inclusion. For \(\lambda \leq \omega_2 \) let \(P_\lambda \) be the countable support \(\lambda \)-stage iteration of the forcing notion \(\text{L} \).

6. **Proposition.** [CH] \(P_{\omega_2} \) is an \(\omega_2 \)-cc proper poset such that \(1 \Vdash_p \ b = c = |\lambda \cdot \omega_1|^\lambda \). Furthermore if \(\mu < \lambda \) then \(P_\lambda \) is forcing isomorphic to \(P_\mu \cdot P_\lambda \).

For proofs of the various assertions in Proposition 6 we refer the reader to [L] and [S1].

7. **Lemma.** [CH] Let \(\{ X_\alpha : \alpha < \omega_2 \} \) be \(P_{\omega_2} \)-names such that \(1 \Vdash \{ X_\alpha : \alpha < \omega_2 \} \subseteq [\omega]^{\omega} \) is \(\omega \)-splitting, then there is a \(\lambda < \omega_2 \) such that \(1 \Vdash \{ X_\alpha : \alpha < \lambda \} \) is \(\omega \)-splitting.

Notation. If \(p \) is a member of a poset \(P \) and \(M \) is a set, “\(p \Vdash \ X \) is \(M \)-splitting” will abbreviate \(p \Vdash \ |A \cap X| = |A - X| \) for each \(P \)-name \(A \in M \) such that \(p \Vdash \ A \in [\omega]^{\omega} \).

We shall say that a poset \(P \) is \(\omega \)-splitting if the following are satisfied: whenever \(P \in M \), where \(M \) is a countable elementary submodel of \(H(\theta) \) for any sufficiently large \(\theta \), \(p \in M \cap P \) and \(X \in M \)-splitting then there is some \(q < p \) which is \((M,P) \)-generic and such that \(q \Vdash X \) is \(M \)-splitting.

Note that an iteration of finitely many \(\omega \)-splitting posets is again \(\omega \)-splitting; hence proper.

8. **Lemma.** If \(P_\delta = \langle (P_\alpha, Q_n) : \alpha < \delta \rangle \in M \) is a countable support iteration of \(\omega \)-splitting (hence proper) posets then \(P_\delta \) is also \(\omega \)-splitting.

9. **Lemma.** Let \(M \) be a countable elementary submodel of \(H(\omega_2) \) and let \(T \subseteq \text{L} \cap M \), then if \(X \) is \(M \)-splitting there is an \((M,L) \)-generic \(T' < T \) such that \(T' \Vdash X \) is \(M \)-splitting. Therefore \(\text{L} \) is \(\omega \)-splitting.

It may be worthwhile to record the following corollary to the above results.

10. **Corollary.** If a family is \(\omega \)-splitting then it will still be \(\omega \)-splitting after forcing with the countable support iteration of Laver forcing. Furthermore in any
model obtained by adding iteratively \(\omega_2 \)-Laver reals the splitting number, \(\mathfrak{s} \), will be \(\omega_1 \).

Before proving Lemmas 7–9 let us indicate how Theorem 5 now follows. Let \(G \) be \(\mathbf{P}_{\omega_2} \)-generic over \(V \) (a model of CH). Let \(\mathcal{X} = \{ X_\alpha : \alpha < \omega_2 = \mathfrak{c} \} \) be an \(\omega \)-splitting family. Choose \(\mathbf{P}_{\omega_2} \)-names \(\{ X_\alpha : \alpha < \omega_2 \} \in V \) so that \(1 \Vdash \mathcal{X} = \{ X_\alpha : \alpha < \omega_2 \} \). By Lemma 7, there is a \(\lambda < \omega_2 \) so that \(1 \Vdash_{\mathbf{P}_\lambda} \{ X_\alpha : \alpha < \lambda \} \) is \(\omega \)-splitting. Let \(G_\lambda = G \cap \mathbf{P}_\lambda \); hence \(V[G_\lambda] \models \{ X_\alpha : \alpha < \lambda \} \) is \(\omega \)-splitting. Since \(\mathbf{P}_{\omega_2} \cong \mathbf{P}_\lambda \ast \mathbf{P}_{\omega_2} \), \(V[G] \models \{ X_\alpha : \alpha < \lambda \} \) is \(\omega \)-splitting by Lemmas 8 and 9.

It remains to prove the Lemmas.

Proof of Lemma 7. By Proposition 6, we may assume that for each \(\alpha < \omega_2 \), there is an \(f(\alpha) < \omega_2 \) such that \(X_\alpha \) is a \(\mathbf{P}_{f(\alpha)} \)-name. Also if \(G \) is \(\mathbf{P}_{\omega_2} \)-generic, \(V[G] \models \) for each \(\alpha < \omega_2 \), there is a \(g(\alpha) < \omega_2 \) such that for each set \(M \in [\omega_2]^{\omega_2} \cap V[G_\alpha] \) there is an \(X \in \{ \text{val}(X_\alpha^C, G) : \beta < g(\alpha) \} \) which is \(M \)-splitting (since \(V[G_\alpha] \models \mathfrak{c} = \omega_1 \)). Since \(\mathbf{P}_{\omega_2} \) is \(\omega_2 \)-cc we may assume that \(g \in V \). Now let \(h \) be a continuous strictly increasing function from \(\omega_2 \) into \(\omega_2 \) such that \(f(\alpha) + g(\alpha) < h(\alpha + 1) \) for all \(\alpha < \omega_2 \). Choose \(\lambda < \omega_2 \) such that \(h(\lambda) = \lambda \); it follows that \(1 \Vdash_{\mathbf{P}_\lambda} \{ X_\alpha : \alpha < \lambda \} \) is \(\omega \)-splitting.

Proof of Lemma 8. Technically we make the inductive assumption that for each \(\beta < \alpha < \delta \) and each \(p \in \mathbf{P}_\beta \) we have that \(p \Vdash -_{\mathbf{P}_\alpha} P_{\alpha} / P_\beta \) is \(\omega \)-splitting; where, as usual, \(P_\alpha / P_\beta \) denotes the \(\mathbf{P}_\beta \)-name satisfying the equation \(P_\alpha = \mathbf{P}_\beta \ast (P_\alpha / P_\beta) \). However in proving the inductive step we can just force with \(\mathbf{P}_\beta \) and work in the extension. Therefore we may make the above inductive assumption and complete the proof by showing that \(\mathbf{P}_\delta \) is \(\omega \)-splitting. As remarked when we defined the notion of an \(\omega \)-splitting poset the proof is trivial in case \(\delta \) is a successor ordinal. Now let \(\theta \) be a large enough cardinal (i.e. \(|\mathcal{P}(\mathbf{P}_\delta)| < \theta \) and let \(\mathbf{P}_\delta \in M \) where \(M \) is a countable elementary submodel of \(H(\theta) \). Suppose further that \(p \in M \cap \mathbf{P}_\delta \) and that \(X \) is \(M \)-splitting. Let \(\{ A_n : n \in \omega \} \) index the set of \(\mathbf{P}_\alpha \)-names of subsets of \(\omega \) which are in \(M \). We may as well assume that \(cf(\delta) = \omega \) since we will be choosing \(q \) to be \(M \)-generic and this \(q \) will force that the \(A_n \)'s are essentially \(P_{M \cap \delta} \)-names. We may therefore choose a countable increasing sequence of ordinals cofinal in \(\delta \) and by our inductive assumption we may as well assume that \(\delta = \omega \).

As in [S2], we shall choose sequences \(p_n, q_n, k_n, m_n \), by induction on \(n \), so that:

1. \(p_n \in \mathbf{P}_\omega \), \(q_n \in \mathbf{P}_n \), and \(k_n \), \(m_n \) are \(\mathbf{P}_\omega \)-names of integers,
2. \(p_{n+1} \models n = p_n \land p_{n+1} < p_n \), \(q_{n+1} \models n = q_n \) and \(q_n < p_n \),
3. for \(n > 0 \), \(q_n \land p_n \models A_n \) is finite or \(m_n \in X \cap A_n \) and \(k_n \in A_n \setminus X \),
 \(q_n \land p_n \) is meant to denote the element \((\langle q_n \land p_n \rangle n) \land p([n, \omega) \in P_\omega) \)
4. \(q_n \) is \(\mathbf{P}_M \)-generic and \(q_n \models -_{\mathbf{P}_n} X \) is \(M \)-splitting, and
5. \(q_n \models -_{\mathbf{P}_n} X \in M \).

Before we begin the induction, let us comment on what (5) means. It is not the case that \(p_n \) will be in \(M \) but \(q_n \models - (\exists p' \in M) \) such that \(p' / P_n = p_n / P_n \).
where \(p/P_n \) denotes the \(P_\omega/P_n \)-name corresponding to \(p \) in the extension by \(P_n \). It is not even the case that we can bring the "\(\exists \)" sign outside the forcing statement. However condition 5 is essential in order for the induction to continue. Let \(p_1 = p \) where \(p \in P_\omega \cap M \) is as chosen above. Since \(p_1 \) is proper (and we have chosen \(\theta \) large enough) we may choose \(q_1 < p_1 \) to be \((M, P_\nu) \)-generic such that \(q_1 \parallel \neg X \) is \(M \)-splitting. Suppose that \(p_n \) and \(q_n \) have been chosen. Let \(G_n \) be \(P_n \)-generic such that \(q_n \) and \(p_n \) are in \(G_n \). In \(V[G_n] \), let \(p'_n \) be the element of \(M \) so that \(p'_nP_n = p_nP_n \), and let \(B_{n+1} = \{ m : (\exists p \in P_\omega/P_n) \ p < p'_n/P_n \text{ and } p \parallel m \in A_{n+1} \} \). Here we are assuming that \(A_n/P_n \) is the \(P_\omega/P_n \)-name which results from evaluating the \(P_\omega \)-name \(A_n \) and similarly for \(p'_n \). Now \(M[G_n] \) is an elementary submodel of \(H(\theta)^{V[G_n]} \) which is a model of \(ZF-P \) (see [S1]) and \(p'_n \in M \), hence \(B_{n+1} \subseteq M[G_n] \). Since \(X \) is \(M[G_n] \)-splitting we may choose \(m_{n+1} \in X \cap B_{n+1} \) and \(p'_n/P_n < p'_n/P_n \), \(p' \in M \) (by elementarity) such that \(p'_n \parallel \neg m_{n+1} \in A_{n+1} \). Similarly we may choose \(p'_{n+1}/P_n < p'_{n+1}/P_n \) and \(k_{n+1} \notin X \) such that \(p'_{n+1} \in M \), \(p'_{n+1} \parallel \neg k_{n+1} \in A_{n+1} \). By assumption \(Q_n \) is \(\omega \)-splitting (in \(V[G_n] \)) hence we may choose \(q_{n+1} < p'_{n+1}(n) \), \(q_{n+1} \in Q_n \) so that \(q_{n+1} \) is \((M[G_n], Q_n \)-generic and so that \(q_{n+1} \parallel \neg X \) is \(M[G_n] \)-splitting. Now we use the maximality principle to choose \(q_{n+1}, p_{n+1}, p_{n+1}' \) and the names \(m_{n+1} \) and \(k_{n+1} \) so as to satisfy (1)-(5). That is, \(q_n \parallel \neg X \) if \(X \) is \(M[G_n] \)-splitting and \(M[G_n] \) is an elementary submodel of \(H(\theta)^{V[G_n]} \) then there are \(p_{n+1}/P_n \in M[G_n], k_{n+1} \) and \(m_{n+1} \) as above. So we may choose a \(P_n \)-name, say \(p_{n+1}'' \), of an element of \(P_\omega/P_n \) and \(P_\omega \)-names \(k_{n+1} \) and \(m_{n+1} \) so that \(p_n \parallel \neg X \) if \(X \) is \(M[G_n] \)-splitting and \(M[G_n] \) is an elementary submodel of \(H(\theta)^{V[G_n]} \) then \(p_{n+1}'' \in M[G_n] \) and \(p_{n+1}'' \parallel \neg k_{n+1} \) and \(m_{n+1} \) are as above. Next we choose a \(P_n \)-name \(q_{n+1} \) for \(q_{n+1}'' \). We let \(p_{n+1}'' = p_n \wedge p_{n+1}' \) and \(q_{n+1} = q_n \wedge q_{n+1} \). It is clear that (1), (2) are satisfied. By [S1], \(q_{n+1} \) is \((M, P_{n+1}) \)-generic and clearly \(q_{n+1} \parallel \neg X \) is \(M \)-splitting; hence (4) holds. The reason that (3), (5) are satisfied is that \(q_{n+1} \parallel \neg M[G_{n+1}] \) is an elementary submodel of \(H(\theta)^{V[G_{n+1}]} \), hence \(p_{n+1}'' \) has the desired properties.

Now if \(q \in P_\omega \) is such that \(q \parallel n = q_n \) for each \(n \in o \) then \(q \) is \((M, P_\omega) \)-generic (see [S1]) and \(q < p_n \) for each \(n \in \omega \). It follows that \(q \parallel \neg X \) is \(M \)-splitting, since for each \(i < j < \omega \) there is an \(n < \omega \) such that \(\parallel A_j = A_i - j \) and so \(q \parallel n \wedge p_n \parallel \neg m \in X \cap A_i - j \) and \(k_n \in A_i - (X \cup j) \).

Proof of Lemma 9. Let \(T \subseteq L \cap M \) where \(M \) is a countable elementary submodel of \(H(\omega_3) \) and assume \(X \) is \(M \)-splitting. Fix indexings \(\{ A_n \} \) of \(M \cap \{ A \mid A \text{ is an } L \text{-name and } 1 \models A \in [\omega]^\omega \} \), and \(\{ D_n \} \) of \(M \cap \{ D \subseteq L \mid D \text{ is dense open} \} \). We shall inductively define a descending sequence \(\{ T_n \} \subseteq L \) (with \(T_0 = T \)) so that, for each \(n \in \omega \):

1. \(T_n \cap \omega = T_{n+1} \cap \omega \), and
2. If \(T' < T_n \) then there is a \(t \subseteq T' \) such that
 a. \(T_n(t) \in M \cap D_n \) and
(b) \((T_n)_t \models X \triangleleft A_n \neq \emptyset\) and \(A_n - X \neq \emptyset\).

If we accomplish this, then condition 1 guarantees that \(T' = \cap T_n \in L\). It is easy to see that condition 2(b) guarantees that \(T' \models X\) is \(M\)-splitting. Condition 2(a) actually has the double role of ensuring that \(T'\) is \(M\)-generic and allowing the induction to continue.

Following [L], if \(S', S \in L\) then we use \(S' <^0 S\) to denote the situation where \(S' < S\) and they have the same root. One of the key facts about Laver forcing from [L] is that if \(S \in L\) and \(\varphi\) is any sentence of the forcing language then there is an \(S' <^0 X\) such that either \(S' \models \varphi\) or \(S' \models \neg \varphi\). Therefore

\[
(*) = \begin{cases}
 \text{if } A \text{ is an } L\text{-name and } F \text{ is a finite set such that} \\
 S \models F \cap A \neq \emptyset, \text{ then there is an } S' <^0 S \text{ and an } x \in F \\
 \text{such that } S \models x \in A.
\end{cases}
\]

Let us assume that \(0 < n \in \omega\) and that \(T_{n-1}\) has been chosen as above. Let \(I\) be the set of members of \(T_{n-1} - \leq^\infty \omega\) which are minimal with respect to the property that \((T_{n-1})_t \in M\). Note that the minimality of the members of \(I\) and condition 2(a) guarantee that the collection \(\{(T_{n-1})_t | t \in I\}\) is an antichain in \(L\) which is maximal below \(T_{n-1}\). Now if we find, for each \(t \in I\), a condition \(T'_t <^0 (T_{n-1})_t\) satisfying condition 2, then we can define \(T_n\) to be \(\bigcup\{T'_t | t \in I\}\).

This works since \(\{T'_t | t \in I\}\) is a maximal-below-\(T_n\) antichain. For the same reason, repeated uses of Facts 1 to 3 finish the proof.

Fact 1. If \(S \in L \cap M\) and \(n \in \omega\), then there is an \(S' <^0 X\) such that the collection \(\{(S')_t | (S')_t \in D_n \cap M\}\) is predense below \(S'\).

Fact 2. If \(S \in L \cap M\) and \(n \in \omega\) there is an \(S' <^0 X\) such that the collection \(\{(S')_t | (S')_t \in M\text{ and } (S')_t \models X \cap A_n \neq \emptyset\}\) is predense below \(S'\).

Fact 3. If \(S \in L \cap M\) and \(n \in \omega\) there is an \(S' <^0 S\) such that the collection \(\{(S'_t)_t | (S'_t)_t \models A_n - X \neq \emptyset\}\) is predense below \(S'\).

Fact 1 is, of course, a well-known property of \(L\) and its proof is similar to the proof of Fact 2. In the proof of Fact 2 we are just using that \(X\) is \(M\)-splitting. Since \(\omega - X\) is also \(M\)-splitting, Fact 3 follows from Fact 2. Now let us prove Fact 2.

Let \(B_n = \{k \in \omega | (\exists S' <^0 S) S' \models k \in A_n\}\). Let us first suppose that \(B_n\) is infinite. In this case, \(B_n \in [\omega]^{\omega} \cap M\), hence we have that \(X \cap B_n \neq \emptyset\).

It follows that we may choose \(S' <^0 S, S' \in M\) and \(k \in X \cap B_n\) so that \(S' \models k \in A_n\)—which certainly suffices.

Now let us suppose that \(\max(B_n) < m\). Let \(I\) be the set of minimal elements of \(\{t \in S | (\exists m_t \geq m) (\exists S'_t <^0 X_t) S'_t \models m_t \in A_n\}\). Since \(1 \models (\exists k \geq m) k \in A_n\) and the members of \(I\) are minimal, \(\{S_t | t \in I\}\) is a maximal-below-\(S\) antichain of \(L\). For each \(t \in I\), fix a minimal \(m_t\) and an \(S'_t \in M\) as in the description of \(I\); hence \(\{m_t | t \in I\} \in M\). We shall show that \(S' = \bigcup(S'_t | t \in I\) and \(m_t \in X\) works. That is, we prove that \(S' \in L\), \(S' <^0 S\) and simply note that \(\{S'_t | t \in I\) and \(m_t \in X\} \) is a maximal-below-\(S'\) antichain. Therefore it suffices to show
that if $s \in S'$ is such that $\text{root}(S) \geq s$, then s has infinitely many immediate successors in S'. First suppose that there is a $t \in I$ with $t \leq s$. Since members of I are minimal, it follows that $(S')_s = S' \cap S_s$—hence $t \in S'$ and $m_t \in X$. Therefore $S'_t \subseteq S'$ and s has infinitely many immediate successors in S'. If there is no such $t \in I$, then S_s has no $<_0$-extension which decides a value of A_n above m. Suppose now that $k \in \omega$ is such that $\max(|\{i | s^i \in S'_i\}) < k$. Let S'' be the $<_0$-extension of S_s obtained by removing $\{t | (\exists i < k)s^i \leq t\}$. We claim that $\{m_t \in I \cap S''\}$ is infinite. Indeed, since $\{S_t \in I \cap S''\}$ is predense below S'', $S'' \models A_n \cap \{m_t \in I \cap S''\} \neq \emptyset$. If the set was finite then, by (*), S'' (hence S_s) would have $<_0$-extension picking one of the values. But now $X \cap \{m_t \in I \cap S''\}$ is nonempty, hence any $t \in I \cap S''$ with $m_t \in X$ is an extension of s in S'—a contradiction to the choice of k.

References

[LNy] R. Levy and P. Nyikos, Families in $\beta \omega$ whose union is regular open, preprint.

[Ny1] P. Nyikos, $\omega \omega$ and the Fréchet-Urysohn property, in preparation.

Department of Mathematics, York University, North York, Ontario, M3J 1P3, Canada