Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Two classes of Fréchet-Urysohn spaces


Author: Alan Dow
Journal: Proc. Amer. Math. Soc. 108 (1990), 241-247
MSC: Primary 54E35; Secondary 03E35, 03E75, 54A35
DOI: https://doi.org/10.1090/S0002-9939-1990-0975638-7
MathSciNet review: 975638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Arhangel’skii introduced five classes of spaces, ${\alpha _i}$-spaces $\left ( {i < 5} \right )$, which are important in the study of products of Fréchet-Urysohn spaces. For each $i < 5$, each ${\alpha _i}$-space is an ${\alpha _{i + 1}}$-space and it follows from the continuum hypothesis that there are countable ${\alpha _{i + 1}}$-spaces which are not ${\alpha _i}$-spaces. A $v$-space ($w$-space) is a Fréchet-Urysohn ${\alpha _1}$-space (${\alpha _2}$-space). We show that there is a model of set theory in which each ${\alpha _2}$-space ($w$-space) is an ${\alpha _1}$-space ($v$-space).


References [Enhancements On Off] (What's this?)

  • A. V. Arhangel′skiÄ­, Frequency spectrum of a topological space and classification of spaces, Dokl. Akad. Nauk SSSR 206 (1972), 265–268 (Russian). MR 0394575
  • ---, The frequency spectrum of a topological space and the product operation, Trudy Mosk. Mat. Obs. 40 (1979) = Transl. Moscow Math. Soc. (1981), Issue 2, 163-200. A. Dow and J. Steprans.
  • Gary Gruenhage, Infinite games and generalizations of first-countable spaces, General Topology and Appl. 6 (1976), no. 3, 339–352. MR 413049
  • Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI https://doi.org/10.1007/BF02392416
  • R. Levy and P. Nyikos, Families in $\beta \omega$ whose union is regular open, preprint.
  • Tsugunori Nogura, A counterexample for a problem of Arhangel′skiÄ­ concerning the product of FrĂ©chet spaces, Topology Appl. 25 (1987), no. 1, 75–80. MR 874979, DOI https://doi.org/10.1016/0166-8641%2887%2990076-9
  • P. Nyikos, ${}^\omega \omega$ and the FrĂ©chet-Urysohn property, in preparation. ---, The Cantor tree and the FrĂ©chet-Urysohn property, preprint, 1987.
  • Roy C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, General Topology and Appl. 4 (1974), 1–28. MR 365463
  • Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
  • ---, Cardinal invariants of the continuum, Axiomatic Set Theory, Eds. J. Baumgartner, D. A. Martin, S. Shelah, Contemp. Math. Amer. Math. Soc., Providence, R.I., 1986.
  • P. L. Sharma, Some characterizations of $W$-spaces and $w$-spaces, General Topology Appl. 9 (1978), no. 3, 289–293. MR 510910, DOI https://doi.org/10.1016/0016-660x%2878%2990032-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E35, 03E35, 03E75, 54A35

Retrieve articles in all journals with MSC: 54E35, 03E35, 03E75, 54A35


Additional Information

Keywords: Fr&#233;chet-Urysohn space, <IMG WIDTH="16" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$v$">-space, <IMG WIDTH="21" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img2.gif" ALT="$w$">-space
Article copyright: © Copyright 1990 American Mathematical Society