Cosimplicial homotopies
HTML articles powered by AMS MathViewer
- by Jean-Pierre Meyer PDF
- Proc. Amer. Math. Soc. 108 (1990), 9-17 Request permission
Abstract:
A very general theorem is obtained which shows that, under certain conditions, 2 cosimplicial objects (constructed from triples) are homotopy-equivalent; cosimplicial homotopies are used. A number of applications are given.References
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573 W. G. Dwyer, H. Miller and J. Neisendorfer, Fibrewise localization and unstable Adams spectral sequences, (to appear).
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609
- Jean-Pierre Meyer, Induced functors on categories of algebras, Math. Z. 142 (1975), 1–14. MR 360740, DOI 10.1007/BF01214842
- Jean-Pierre Meyer, Bar and cobar constructions. I, J. Pure Appl. Algebra 33 (1984), no. 2, 163–207. MR 754954, DOI 10.1016/0022-4049(84)90005-7
- Jean-Pierre Meyer, Bar and cobar constructions. II, J. Pure Appl. Algebra 43 (1986), no. 2, 179–210. MR 866618, DOI 10.1016/0022-4049(86)90094-0
- Ross Street, The formal theory of monads, J. Pure Appl. Algebra 2 (1972), no. 2, 149–168. MR 299653, DOI 10.1016/0022-4049(72)90019-9
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 9-17
- MSC: Primary 55P60; Secondary 55U99
- DOI: https://doi.org/10.1090/S0002-9939-1990-0976365-2
- MathSciNet review: 976365