Conjugate convex functions and the epi-distance topology
HTML articles powered by AMS MathViewer
- by Gerald Beer PDF
- Proc. Amer. Math. Soc. 108 (1990), 117-126 Request permission
Abstract:
Let $\Gamma (X)$ denote the proper, lower semicontinuous, convex functions on a normed linear space, and let ${\Gamma ^ * }({X^ * })$ denote the proper, weak*-lower semicontinuous, convex functions on the dual ${X^ * }$ of $X$. It is well-known that the Young-Fenchel transform (conjugate operator) is bicontinuous when $X$ is reflexive and both $\Gamma (X)$ and ${\Gamma ^ * }({X^ * })$ are equipped with the topology of Mosco convergence. We show that without reflexivity, the transform is bicontinuous, provided we equip both $\Gamma (X)$ and ${\Gamma ^ * }({X^ * })$ with the (metrizable) epi-distance topology of Attouch and Wets. Convergence of a sequence of convex functions $\left \langle {{f_n}} \right \rangle$ to $f$ in this topology means uniform convergence on bounded subsets of the associated sequence of distance functional $\left \langle {d( \cdot ,{\text {epi}}{f_n})} \right \rangle$ to $d( \cdot ,{\text {epi}}f)$.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850 H. Attouch, R. Lucchetti, and R. Wets, The topology of the $\rho$-Hausdorff distance, (to appear Ann. Mat. Pura. Appl.). H. Attouch and R. Wets, Quantitative stability of variational systems: I. The epigraphical distance, working paper IIASA, Laxenburg, Austria, 1988. —, Quantitative statibility of variational systems: II. A framework for nonlinear conditioning, working paper, IIASA, Laxenburg, Austria, 1988.
- Kerry Back, Continuity of the Fenchel transform of convex functions, Proc. Amer. Math. Soc. 97 (1986), no. 4, 661–667. MR 845984, DOI 10.1090/S0002-9939-1986-0845984-5
- Gerald Beer, An embedding theorem for the Fell topology, Michigan Math. J. 35 (1988), no. 1, 3–9. MR 931935, DOI 10.1307/mmj/1029003677
- Gerald Beer, On Mosco convergence of convex sets, Bull. Austral. Math. Soc. 38 (1988), no. 2, 239–253. MR 969914, DOI 10.1017/S0004972700027519
- Gerald Beer, On the Young-Fenchel transform for convex functions, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1115–1123. MR 937844, DOI 10.1090/S0002-9939-1988-0937844-8
- Gerald Beer, Convergence of continuous linear functionals and their level sets, Arch. Math. (Basel) 52 (1989), no. 5, 482–491. MR 998621, DOI 10.1007/BF01198356
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- S. Dolecki, Continuity of bilinear and nonbilinear polarities, Optimization and related fields (Erice, 1984) Lecture Notes in Math., vol. 1190, Springer, Berlin, 1986, pp. 191–213. MR 858351, DOI 10.1007/BFb0076707
- Sebastiano Francaviglia, Alojzy Lechicki, and Sandro Levi, Quasiuniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), no. 2, 347–370. MR 813603, DOI 10.1016/0022-247X(85)90246-X
- John R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650456
- Richard B. Holmes, A course on optimization and best approximation, Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, Berlin-New York, 1972. MR 0420367
- J.-L. Joly, Une famille de topologies sur l’ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. Pures Appl. (9) 52 (1973), 421–441 (1974) (French). MR 500129
- Roberto Lucchetti and Fioravante Patrone, Hadamard and Tyhonov well-posedness of a certain class of convex functions, J. Math. Anal. Appl. 88 (1982), no. 1, 204–215. MR 661413, DOI 10.1016/0022-247X(82)90187-1
- L. McLinden and Roy C. Bergstrom, Preservation of convergence of convex sets and functions in finite dimensions, Trans. Amer. Math. Soc. 268 (1981), no. 1, 127–142. MR 628449, DOI 10.1090/S0002-9947-1981-0628449-5
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518–535. MR 283586, DOI 10.1016/0022-247X(71)90200-9 R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI 10.1016/0022-247X(77)90060-9
- Makoto Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), no. 4, 301–309. MR 740641, DOI 10.1016/0021-9045(84)90003-0
- David W. Walkup and Roger J.-B. Wets, Continuity of some convex-cone-valued mappings, Proc. Amer. Math. Soc. 18 (1967), 229–235. MR 209806, DOI 10.1090/S0002-9939-1967-0209806-6
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 117-126
- MSC: Primary 46A55; Secondary 46G99, 58C99
- DOI: https://doi.org/10.1090/S0002-9939-1990-0982400-8
- MathSciNet review: 982400