Measures of graphs on the reals
HTML articles powered by AMS MathViewer
- by Seth M. Malitz PDF
- Proc. Amer. Math. Soc. 108 (1990), 77-87 Request permission
Abstract:
This paper studies measure properties of graphs with infinitely many vertices. Let $[0,1]$ denote the real unit interval, and $F$ be the collection of bijections taking $[0,1]$ onto itself. Given a graph $G = \left \langle {[0,1],E} \right \rangle$ and $f \in F$, define the $f$-representation of $G$ to be the set ${E_f} = \{ \langle {f(x),f(y)} \rangle :x,y \in [0,1]$ and $\langle {x,y} \rangle \in E\}$. Let $\mu$ be $2$-dimensional Lebesgue measure. Define the measure spectrum of $G$ to be the set $M(G) = \{ m \in [0,1]:\exists f \in F$ with ${E_f}$ measurable and $\mu {E_f} = m\}$. Our main result characterizes those subsets of reals that are the measure spectra of graphs.References
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132
- Andreas Blass, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981), no. 2, 271–277. MR 609665, DOI 10.1090/S0002-9939-1981-0609665-0
- Béla Bollobás, Graph theory, Graduate Texts in Mathematics, vol. 63, Springer-Verlag, New York-Berlin, 1979. An introductory course. MR 536131 T. Carlson, personal communication. F. Galvin, Partition theorems for the real line, Notices Amer. Math. Soc. 15 (1968), 660; Erratum 16 (1969), 1095.
- Frank Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London 1969. MR 0256911 G. Kalai, A new approach to Turán’s Conjecture, Graphs and Combinatorics 1 1986, 107-109.
- Jan Mycielski, Algebraic independence and measure, Fund. Math. 61 (1967), 165–169. MR 224762, DOI 10.4064/fm-61-2-165-169
- Waclaw Sierpiński, Sur un problème de la théorie des relations, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 2 (1933), no. 3, 285–287 (French). MR 1556708
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 77-87
- MSC: Primary 05C99; Secondary 03E05, 28A99
- DOI: https://doi.org/10.1090/S0002-9939-1990-0982406-9
- MathSciNet review: 982406