Derivations with nilpotent values on Lie ideals
HTML articles powered by AMS MathViewer
- by Charles Lanski PDF
- Proc. Amer. Math. Soc. 108 (1990), 31-37 Request permission
Abstract:
Let $R$ be a ring containing no nonzero nil right ideal and let $U$ be a Lie ideal of $R$. If $d$ is a derivation of $R$ so that $d(u)$ is a nilpotent element for each $u \in U$, then $d = 0$ when $R$ is a prime ring and $U$ is not commutative. The main result shows that in general, $d(I) = 0$ for $I$ the ideal $R$ generated by $[U,U]$ and that $R$ is the subdirect sum of two images so that $d$ induces the zero derivation on one, and the image of $U$ in the other is commutative.References
- L. Carini and A. Giambruno, Lie ideals and nil derivations, Boll. Un. Mat. Ital. A (6) 4 (1985), no. 3, 497–503 (English, with Italian summary). MR 821089
- B. Felzenszwalb and Charles Lanski, On the centralizers of ideals and nil derivations, J. Algebra 83 (1983), no. 2, 520–530. MR 714263, DOI 10.1016/0021-8693(83)90237-5
- A. Giambruno and I. N. Herstein, Derivations with nilpotent values, Rend. Circ. Mat. Palermo (2) 30 (1981), no. 2, 199–206. MR 651152, DOI 10.1007/BF02844306
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- I. N. Herstein, Invariant subrings of a certain kind, Israel J. Math. 26 (1977), no. 2, 205–208. MR 432711, DOI 10.1007/BF03007670
- I. N. Herstein, Center-like elements in prime rings, J. Algebra 60 (1979), no. 2, 567–574. MR 549949, DOI 10.1016/0021-8693(79)90102-9
- Charles Lanski and Susan Montgomery, Lie structure of prime rings of characteristic $2$, Pacific J. Math. 42 (1972), 117–136. MR 323839
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 31-37
- MSC: Primary 16A72; Secondary 16A12, 16A68
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984803-4
- MathSciNet review: 984803