Relatively open mappings
HTML articles powered by AMS MathViewer
- by Woo Young Lee
- Proc. Amer. Math. Soc. 108 (1990), 93-94
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984804-6
- PDF | Request permission
Abstract:
A bounded linear operator on a Banach space which is one-one, dense and ’relatively almost open’ must be invertible.References
- Sterling K. Berberian, Lectures in functional analysis and operator theory, Graduate Texts in Mathematics, No. 15, Springer-Verlag, New York-Heidelberg, 1974. MR 0417727
- Robin Harte, Almost open mappings between normed spaces, Proc. Amer. Math. Soc. 90 (1984), no. 2, 243–249. MR 727242, DOI 10.1090/S0002-9939-1984-0727242-0
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Albert Wilansky, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978. MR 518316
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 93-94
- MSC: Primary 47A05
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984804-6
- MathSciNet review: 984804