Gaussian curvatures of Lorentzian metrics on the plane and punctured planes
HTML articles powered by AMS MathViewer
- by Jiang Fan Li PDF
- Proc. Amer. Math. Soc. 108 (1990), 197-205 Request permission
Abstract:
We prove that every $f \in {C^k}\left ( {{R^2}} \right )$ is the Gaussian curvature of some ${C^{k + 1}}$ -Lorentzian metric $\left ( {0 \leq k \leq \infty } \right )$. Let $M$ denote the cylinder. We prove that every continuous function on $M$ is the Gaussian curvature of some ${C^1}$-Lorentzian metric. If $f \in {C^k}\left ( M \right )$ satisfies the condition (H) in the Lemma 2 below, then it is the curvature function of some ${C^{k + 1}}$-Lorentzian metric. If $f \in {C^k}\left ( {{R^2}} \right )\left ( {1 \leq k \leq \infty } \right )$ has compact support, then the Lorentzian metric can be made complete.References
- John T. Burns, Curvature functions on Lorentz $2$-manifolds, Pacific J. Math. 70 (1977), no. 2, 325–335. MR 514851
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 197-205
- MSC: Primary 53C50; Secondary 35J60
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984805-8
- MathSciNet review: 984805