Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Gaussian curvatures of Lorentzian metrics on the plane and punctured planes


Author: Jiang Fan Li
Journal: Proc. Amer. Math. Soc. 108 (1990), 197-205
MSC: Primary 53C50; Secondary 35J60
DOI: https://doi.org/10.1090/S0002-9939-1990-0984805-8
MathSciNet review: 984805
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every $f \in {C^k}\left ( {{R^2}} \right )$ is the Gaussian curvature of some ${C^{k + 1}}$ -Lorentzian metric $\left ( {0 \leq k \leq \infty } \right )$. Let $M$ denote the cylinder. We prove that every continuous function on $M$ is the Gaussian curvature of some ${C^1}$-Lorentzian metric. If $f \in {C^k}\left ( M \right )$ satisfies the condition (H) in the Lemma 2 below, then it is the curvature function of some ${C^{k + 1}}$-Lorentzian metric. If $f \in {C^k}\left ( {{R^2}} \right )\left ( {1 \leq k \leq \infty } \right )$ has compact support, then the Lorentzian metric can be made complete.


References [Enhancements On Off] (What's this?)

  • John T. Burns, Curvature functions on Lorentz $2$-manifolds, Pacific J. Math. 70 (1977), no. 2, 325–335. MR 514851

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C50, 35J60

Retrieve articles in all journals with MSC: 53C50, 35J60


Additional Information

Keywords: Curvature function, (complete) Lorentzian metric, characteristic line, (forward) complete geodesic
Article copyright: © Copyright 1990 American Mathematical Society