On twisted Fréchet and (LB)-spaces
HTML articles powered by AMS MathViewer
- by G. Metafune and V. B. Moscatelli PDF
- Proc. Amer. Math. Soc. 108 (1990), 145-150 Request permission
Abstract:
We study twisted Fréchet spaces as well as twisted $(LB)$-spaces. We prove that a twisted space can have a nontwisted dual and that twisted spaces of a special class cannot be complemented in nontwisted spaces. We also give new examples of twisted spaces.References
-
J. Bonet and S. Dierolf, A note on biduals of strict $(LB)$-spaces, Resultate Math. (to appear).
—, On (LB)-spaces of Moscatelli type, Doǧa Bilim Dergisi. Ser. ${{\text {A}}_1}$: Mat. Fiz. Kim. Astronom. Yerbilim (to appear).
—, On Fréchet spaces of Moscatelli type, preprint.
J. C. Diaz, Continuous norms in Fréchet lattices, Arch. Math. (to appear).
- Susanne Dierolf, On spaces of continuous linear mappings between locally convex spaces, Note Mat. 5 (1985), no. 2, 147–255. MR 863525
- Susanne Dierolf and Vincenzo B. Moscatelli, A Fréchet space which has a continuous norm but whose bidual does not, Math. Z. 191 (1986), no. 1, 17–21. MR 812599, DOI 10.1007/BF01163606
- Klaus Floret and Vincenzo Bruno Moscatelli, On bases in strict inductive and projective limits of locally convex spaces, Pacific J. Math. 119 (1985), no. 1, 103–113. MR 797017
- Klaus Floret and Vincenzo Bruno Moscatelli, Unconditional bases in Fréchet-spaces, Arch. Math. (Basel) 47 (1986), no. 2, 129–130. MR 859262, DOI 10.1007/BF01193682
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- G. Metafune and V. B. Moscatelli, A twisted Fréchet space with basis, Monatsh. Math. 105 (1988), no. 2, 127–129. MR 930431, DOI 10.1007/BF01501165 —, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl. 153 (4) (1989), 1-16.
- Giorgio Metafune and Vincenzo B. Moscatelli, Another construction of twisted spaces, Proc. Roy. Irish Acad. Sect. A 87 (1987), no. 2, 163–168. MR 941711
- V. B. Moscatelli, Fréchet spaces without continuous norms and without bases, Bull. London Math. Soc. 12 (1980), no. 1, 63–66. MR 565487, DOI 10.1112/blms/12.1.63
- Jari Taskinen, Counterexamples to “problème des topologies” of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 63 (1986), 25. MR 879646
- Dietmar Vogt and Max-Josef Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), no. 1, 63–80 (German, with English summary). MR 646960, DOI 10.4064/sm-70-1-63-80
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 145-150
- MSC: Primary 46A06; Secondary 46A12, 46A20, 46A32
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984806-X
- MathSciNet review: 984806