A simple construction of Stein’s complementary series representations
HTML articles powered by AMS MathViewer
- by Siddhartha Sahi PDF
- Proc. Amer. Math. Soc. 108 (1990), 257-266 Request permission
Abstract:
We given an elementary construction of Stein’s complementary series for ${\text {GL}}\left ( {2n} \right )$ over an arbitrary local field $\mathbb {F}$, and determine their restrictions to the "mirabolic" subgroup ${P_{2n}} \approx {\text {GL}}\left ( {2n - 1,\mathbb {F}} \right ) \ltimes {\mathbb {F}^{2n - 1}}$. Taken together with the results in [S], this allows one to calculate the adduced representation $A\pi$ for an arbitrary irreducible, unitary representation $\pi$ of $GL(n,\mathbb {C})$.References
-
J. Bernstein, $P$-invariant distributions on ${\text {GL}}\left ( n \right )$ and the classification of unitary representation of ${\text {GL}}\left ( n \right )$ (non-Archimedean case), in "Lie Group Representations II", Proceedings, University of Maryland 1982-83, (R. Herb et al., eds.) SLNM 1041.
- R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the $2\times 2$ real unimodular group, Amer. J. Math. 82 (1960), 1–62. MR 163988, DOI 10.2307/2372876 S. Sahi, On Kirillov’s conjecture for archimedean fields, Compos. Math. (to appear).
- E. M. Stein, Analysis in matrix spaces and some new representations of $\textrm {SL}(N,\,C)$, Ann. of Math. (2) 86 (1967), 461–490. MR 219670, DOI 10.2307/1970611
- David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, DOI 10.1007/BF01394418 A. Weil, Basic number theory, Springer-Verlag, New York.
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 257-266
- MSC: Primary 22E50; Secondary 22E45, 22E46
- DOI: https://doi.org/10.1090/S0002-9939-1990-0984813-7
- MathSciNet review: 984813