A simple construction of Stein’s complementary series representations
HTML articles powered by AMS MathViewer
 by Siddhartha Sahi PDF
 Proc. Amer. Math. Soc. 108 (1990), 257266 Request permission
Abstract:
We given an elementary construction of Stein’s complementary series for ${\text {GL}}\left ( {2n} \right )$ over an arbitrary local field $\mathbb {F}$, and determine their restrictions to the "mirabolic" subgroup ${P_{2n}} \approx {\text {GL}}\left ( {2n  1,\mathbb {F}} \right ) \ltimes {\mathbb {F}^{2n  1}}$. Taken together with the results in [S], this allows one to calculate the adduced representation $A\pi$ for an arbitrary irreducible, unitary representation $\pi$ of $GL(n,\mathbb {C})$.References

J. Bernstein, $P$invariant distributions on ${\text {GL}}\left ( n \right )$ and the classification of unitary representation of ${\text {GL}}\left ( n \right )$ (nonArchimedean case), in "Lie Group Representations II", Proceedings, University of Maryland 198283, (R. Herb et al., eds.) SLNM 1041.
 R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the $2\times 2$ real unimodular group, Amer. J. Math. 82 (1960), 1–62. MR 163988, DOI 10.2307/2372876 S. Sahi, On Kirillov’s conjecture for archimedean fields, Compos. Math. (to appear).
 E. M. Stein, Analysis in matrix spaces and some new representations of $\textrm {SL}(N,\,C)$, Ann. of Math. (2) 86 (1967), 461–490. MR 219670, DOI 10.2307/1970611
 David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, DOI 10.1007/BF01394418 A. Weil, Basic number theory, SpringerVerlag, New York.
Additional Information
 © Copyright 1990 American Mathematical Society
 Journal: Proc. Amer. Math. Soc. 108 (1990), 257266
 MSC: Primary 22E50; Secondary 22E45, 22E46
 DOI: https://doi.org/10.1090/S00029939199009848137
 MathSciNet review: 984813