Classification of skew symmetric matrices
HTML articles powered by AMS MathViewer
- by Berndt Brenken PDF
- Proc. Amer. Math. Soc. 108 (1990), 163-169 Request permission
Abstract:
The group ${\text {GL(}}d,\mathbb {Z}{\text {) = Aut(}}{\mathbb {Z}^d}{\text {)}}$ acts on the $\mathbb {Z}$-module $\operatorname {Hom} {\text {(}}{\Lambda ^2}{\mathbb {Z}^d},\mathbb {Z}/a\mathbb {Z}){\text {by}}\varphi \to \varphi {\text {(}}\alpha \Lambda \alpha {\text {)}}\quad {\text {(}}\alpha \in {\text {Aut}}{\mathbb {Z}^d}{\text {)}}$. Associated with each $\varphi$ in $\operatorname {Hom} {\text {(}}{\Lambda ^2}{\mathbb {Z}^d},\mathbb {Z}/a\mathbb {Z})$ is a finite set of invariants completely describing the orbit of $\varphi$ under this action. The result holds with $\mathbb {Z}$ replaced by an arbitrary commutative principal ideal domain.References
- Berndt Brenken, A classification of some noncommutative tori, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 389–397. MR 1065837, DOI 10.1216/rmjm/1181073114 F. G. Frobenius, Theorie der linearen Formen mit ganzen coefficienten, J. Reine Angew. Math. 86 (1880), 96-116.
- Morris Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972. MR 0340283
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 163-169
- MSC: Primary 15A72; Secondary 15A21
- DOI: https://doi.org/10.1090/S0002-9939-1990-0986646-4
- MathSciNet review: 986646