Generic properties of compact starshaped sets
HTML articles powered by AMS MathViewer
- by Peter M. Gruber and Tudor I. Zamfirescu PDF
- Proc. Amer. Math. Soc. 108 (1990), 207-214 Request permission
Abstract:
A typical compact starshaped set in ${{\text {E}}^d}$ is "small" from the topological as well as from the measure theoretic viewpoint. We formulate this more explicitly in the paper by using the notions of porosity and Hausdorff dimension. Moreover, we see that the directions of the line segments in a typical compact starshaped set are many, but not too many.References
- P. Alexandroff and H. Hopf, Topologie. I, Die Grundlehren der mathematischen Wissenschaften, Band 45, Springer-Verlag, Berlin-New York, 1974. Berichtigter Reprint. MR 0345087
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Peter M. Gruber, In most cases approximation is irregular, Rend. Sem. Mat. Univ. Politec. Torino 41 (1983), no. 1, 19–33 (1984). MR 778840
- Peter M. Gruber, Results of Baire category type in convexity, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 163–169. MR 809203, DOI 10.1111/j.1749-6632.1985.tb14550.x
- Peter M. Gruber, Dimension and structure of typical compact sets, continua and curves, Monatsh. Math. 108 (1989), no. 2-3, 149–164. MR 1026615, DOI 10.1007/BF01308668
- Richard B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR 0410335
- John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Tudor Zamfirescu, Using Baire categories in geometry, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), no. 1, 67–88. MR 859850
- Tudor Zamfirescu, Typical starshaped sets, Aequationes Math. 36 (1988), no. 2-3, 188–200. MR 972285, DOI 10.1007/BF01836090
- Tudor Zamfirescu, Description of most starshaped surfaces, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 245–251. MR 1002537, DOI 10.1017/S0305004100078063
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 207-214
- MSC: Primary 52A30; Secondary 54E52
- DOI: https://doi.org/10.1090/S0002-9939-1990-0986649-X
- MathSciNet review: 986649