Iterated fine limits
HTML articles powered by AMS MathViewer
- by Kohur GowriSankaran PDF
- Proc. Amer. Math. Soc. 108 (1990), 157-162 Request permission
Abstract:
Let $v$ and $u$ be, respectively $n$-superharmonic and $n$-harmonic functions on the product of $n$ harmonic spaces. We prove that the iterated fine limits of $\frac {v}{u}$ exist and are independent of the order, for $\lambda$ almost every minimal boundary element where $\lambda$ represents the function $u$. As an application we prove an important property concerning the reduced function of a positive $n$-harmonic function.References
-
N. Bourbaki, Intégration, chapitre 5, "Intégration des Mesures".
M. Brelot, Seminaire de Theorie du Potential, I. H. P. Paris, 1958.
- Kohur Gowrisankaran, Fatou-Naïm-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 2, 455–467 (English, with French summary). MR 210917
- Kohur Gowrisankaran, Multiply harmonic functions, Nagoya Math. J. 28 (1966), 27–48. MR 209513
- Kohur Gowrisankaran, Iterated fine limits and iterated nontangential limits, Trans. Amer. Math. Soc. 173 (1972), 71–92. MR 311927, DOI 10.1090/S0002-9947-1972-0311927-0
- Laurent Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies in Mathematics, No. 6, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973. MR 0426084
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 157-162
- MSC: Primary 31D05
- DOI: https://doi.org/10.1090/S0002-9939-1990-0987609-5
- MathSciNet review: 987609