Complementation of Jordan triples in von Neumann algebras
HTML articles powered by AMS MathViewer
- by Cho-Ho Chu and Bruno Iochum PDF
- Proc. Amer. Math. Soc. 108 (1990), 19-24 Request permission
Abstract:
We show that the predual of a JBW*-triple is complemented in the predual of a von Neumann algebra. Hence a quotientof a JB*-triple does not contain ${l_1}$ if and only if its dual enjoys the Radon-Nikodym property. We also show that a JB*-triple either contains ${c_0}$ or is reflexive.References
- C. A. Akemann, P. G. Dodds, and J. L. B. Gamlen, Weak compactness in the dual space of $C^{\ast }$-algebra, J. Functional Analysis 10 (1972), 446–450. MR 0344898, DOI 10.1016/0022-1236(72)90040-7
- Tom Barton and Gilles Godefroy, Remarks on the predual of a $\textrm {JB}^\ast$-triple, J. London Math. Soc. (2) 34 (1986), no. 2, 300–304. MR 856513, DOI 10.1112/jlms/s2-34.2.300
- T. Barton and Richard M. Timoney, Weak$^\ast$-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177–191. MR 884654, DOI 10.7146/math.scand.a-12160
- Cho-Ho Chu and Bruno Iochum, Weakly compact operators on Jordan triples, Math. Ann. 281 (1988), no. 3, 451–458. MR 954152, DOI 10.1007/BF01457156
- Edward G. Effros and Erling Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. 45 (1979), no. 1, 127–138. MR 567438, DOI 10.7146/math.scand.a-11830
- Yaakov Friedman and Bernard Russo, Algèbres d’opérateurs sans ordre: solution du problème du projecteur contractif, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 9, 393–396 (French, with English summary). MR 703905
- N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637, DOI 10.1090/memo/0378
- Nassif Ghoussoub and Elias Saab, On the weak Radon-Nikodým property, Proc. Amer. Math. Soc. 81 (1981), no. 1, 81–84. MR 589141, DOI 10.1090/S0002-9939-1981-0589141-4 H. Hanche-Olsen and E. Størmer, Jordan operator algebras, Pitman, Marshfield, MA, 1984.
- Günther Horn, Classification of JBW$^*$-triples of type $\textrm {I}$, Math. Z. 196 (1987), no. 2, 271–291. MR 910832, DOI 10.1007/BF01163661
- Günther Horn, Characterization of the predual and ideal structure of a $\textrm {JBW}^*$-triple, Math. Scand. 61 (1987), no. 1, 117–133. MR 929400, DOI 10.7146/math.scand.a-12194
- G. Horn and E. Neher, Classification of continuous $JBW^*$-triples, Trans. Amer. Math. Soc. 306 (1988), no. 2, 553–578. MR 933306, DOI 10.1090/S0002-9947-1988-0933306-7
- Bruno Iochum, Cônes autopolaires et algèbres de Jordan, Lecture Notes in Mathematics, vol. 1049, Springer-Verlag, Berlin, 1984 (French). MR 764767, DOI 10.1007/BFb0071358
- Liliana Janicka, Some measure-theoretical characterization of Banach spaces not containing $l_{1}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 561–565 (1980) (English, with Russian summary). MR 581552
- Wilhelm Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), no. 4, 503–529. MR 710768, DOI 10.1007/BF01173928
- Kazimierz Musiał and Czesław Ryll-Nardzewski, Liftings of vector measures and their applications to RNP and WRNP, Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977) Lecture Notes in Math., vol. 645, Springer, Berlin, 1978, pp. 162–171. MR 502438
- Constantin P. Niculescu, A note on weakly compact operators on $C^{\ast }$-algebras, Rev. Roumaine Math. Pures Appl. 25 (1980), no. 4, 631–634. MR 577053
- Harald Upmeier, Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Mathematics Studies, vol. 104, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 96. MR 776786
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 19-24
- MSC: Primary 46L10; Secondary 17C65, 46B20, 46L70
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990418-4
- MathSciNet review: 990418