Complementation of Jordan triples in von Neumann algebras
HTML articles powered by AMS MathViewer
- by Cho-Ho Chu and Bruno Iochum
- Proc. Amer. Math. Soc. 108 (1990), 19-24
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990418-4
- PDF | Request permission
Abstract:
We show that the predual of a JBW*-triple is complemented in the predual of a von Neumann algebra. Hence a quotientof a JB*-triple does not contain ${l_1}$ if and only if its dual enjoys the Radon-Nikodym property. We also show that a JB*-triple either contains ${c_0}$ or is reflexive.References
- C. A. Akemann, P. G. Dodds, and J. L. B. Gamlen, Weak compactness in the dual space of $C^{\ast }$-algebra, J. Functional Analysis 10 (1972), 446–450. MR 0344898, DOI 10.1016/0022-1236(72)90040-7
- Tom Barton and Gilles Godefroy, Remarks on the predual of a $\textrm {JB}^\ast$-triple, J. London Math. Soc. (2) 34 (1986), no. 2, 300–304. MR 856513, DOI 10.1112/jlms/s2-34.2.300
- T. Barton and Richard M. Timoney, Weak$^\ast$-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177–191. MR 884654, DOI 10.7146/math.scand.a-12160
- Cho-Ho Chu and Bruno Iochum, Weakly compact operators on Jordan triples, Math. Ann. 281 (1988), no. 3, 451–458. MR 954152, DOI 10.1007/BF01457156
- Edward G. Effros and Erling Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. 45 (1979), no. 1, 127–138. MR 567438, DOI 10.7146/math.scand.a-11830
- Yaakov Friedman and Bernard Russo, Algèbres d’opérateurs sans ordre: solution du problème du projecteur contractif, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 9, 393–396 (French, with English summary). MR 703905
- N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637, DOI 10.1090/memo/0378
- Nassif Ghoussoub and Elias Saab, On the weak Radon-Nikodým property, Proc. Amer. Math. Soc. 81 (1981), no. 1, 81–84. MR 589141, DOI 10.1090/S0002-9939-1981-0589141-4 H. Hanche-Olsen and E. Størmer, Jordan operator algebras, Pitman, Marshfield, MA, 1984.
- Günther Horn, Classification of JBW$^*$-triples of type $\textrm {I}$, Math. Z. 196 (1987), no. 2, 271–291. MR 910832, DOI 10.1007/BF01163661
- Günther Horn, Characterization of the predual and ideal structure of a $\textrm {JBW}^*$-triple, Math. Scand. 61 (1987), no. 1, 117–133. MR 929400, DOI 10.7146/math.scand.a-12194
- G. Horn and E. Neher, Classification of continuous $JBW^*$-triples, Trans. Amer. Math. Soc. 306 (1988), no. 2, 553–578. MR 933306, DOI 10.1090/S0002-9947-1988-0933306-7
- Bruno Iochum, Cônes autopolaires et algèbres de Jordan, Lecture Notes in Mathematics, vol. 1049, Springer-Verlag, Berlin, 1984 (French). MR 764767, DOI 10.1007/BFb0071358
- Liliana Janicka, Some measure-theoretical characterization of Banach spaces not containing $l_{1}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 561–565 (1980) (English, with Russian summary). MR 581552
- Wilhelm Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), no. 4, 503–529. MR 710768, DOI 10.1007/BF01173928
- Kazimierz Musiał and Czesław Ryll-Nardzewski, Liftings of vector measures and their applications to RNP and WRNP, Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977) Lecture Notes in Math., vol. 645, Springer, Berlin-New York, 1978, pp. 162–171. MR 502438
- Constantin P. Niculescu, A note on weakly compact operators on $C^{\ast }$-algebras, Rev. Roumaine Math. Pures Appl. 25 (1980), no. 4, 631–634. MR 577053
- Harald Upmeier, Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Mathematics Studies, vol. 104, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 96. MR 776786
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 19-24
- MSC: Primary 46L10; Secondary 17C65, 46B20, 46L70
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990418-4
- MathSciNet review: 990418