Compact weighted composition operators on Banach lattices
HTML articles powered by AMS MathViewer
- by William Feldman PDF
- Proc. Amer. Math. Soc. 108 (1990), 95-99 Request permission
Abstract:
A characterization of compact (and $M$-weakly compact) weighted composition operators on real and complex Banach lattices which can be appropriately realized as function spaces is provided.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- William Alan Feldman and James F. Porter, Banach lattices with locally compact representation spaces, Math. Z. 174 (1980), no. 3, 233–239. MR 593822, DOI 10.1007/BF01161412
- W. A. Feldman and J. F. Porter, Operators on Banach lattices as weighted compositions, J. London Math. Soc. (2) 33 (1986), no. 1, 149–156. MR 829395, DOI 10.1112/jlms/s2-33.1.149
- Herbert Kamowitz, Compact weighted endomorphisms of $C(X)$, Proc. Amer. Math. Soc. 83 (1981), no. 3, 517–521. MR 627682, DOI 10.1090/S0002-9939-1981-0627682-1
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
- R. K. Singh and W. H. Summers, Compact and weakly compact composition operators on spaces of vector valued continuous functions, Proc. Amer. Math. Soc. 99 (1987), no. 4, 667–670. MR 877036, DOI 10.1090/S0002-9939-1987-0877036-3
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 95-99
- MSC: Primary 47B55; Secondary 47B05, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990422-6
- MathSciNet review: 990422