NOTES ON THE INVERSION OF INTEGRALS II

GEORGE R. KEMPF

(Communicated by Jonathan M. Rosenberg)

Abstract. If W is a Picard bundle on the Jacobian J of a curve C, we have the problem of describing W globally. The theta divisor θ is ample on J. Thus it is possible to write W as the sheaf associated to a graded M over the well-known ring $\oplus_{m \geq 0} \Gamma(J, \mathcal{O}_J(m \theta))$. In this paper we compute the degree of generators and relations for such a module M.

In this part I will solve a problem which will allow the development of the normal presentation of twists of the Picard bundle on the Jacobian rather than their pull-back by isogenies. Also I will discuss the rigidity of Picard bundles pulled back by isogenies.

1. The restriction theorem

Let \mathcal{L} be an ample invertible sheaf on an abelian variety X over $k = \overline{k}$. Let $1 \to \mathbb{G}_m \to H \to K \to 0$ be Mumford’s theta group of \mathcal{L}. Here K is the closed subgroupscheme of X given by $\text{Ker}(\psi) = K$ where $\psi : X \to \hat{X}$ is as usual. Take a maximal closed subgroupscheme K^1 of K such that $\alpha^{-1}(K_1)$ is abelian. As the commutative extension of K_1 by \mathbb{G}_m splits, we may choose a homomorphism $\sigma : K_1 \to H$ such that $\alpha \circ \sigma = 1_{K_1}$.

Let x be a point of X. Then we have a restriction homomorphism $R(x) : \Gamma(X, \mathcal{L}) \to \Gamma(x + K_1, \mathcal{L}|_{x+K_1})$. Our first result is

Lemma 1. For x in a non-empty open subset of X, the map $R(x)$ is an isomorphism.

Proof. By standard theory both spaces have the same dimension. Better yet they are both the regular representation of K_1. Let’s see how the representations occur. By definition we have a given H-linearization of \mathcal{L} and, hence, an induced $\alpha^{-1}(K_1)$-linearization of $\mathcal{L}|_{x+K_1}$. The restriction $R(x)$ is obviously a $\alpha^{-1}(K_1)$-homomorphism. Thus via α the restriction $R(x)$ is a homomorphism of K_1-modules. by [7 or 8] $\Gamma(X, \mathcal{L})$ is isomorphic to the regular representation of K_1. The same holds for $\Gamma(x + K_1, \mathcal{L}|_{x+K_1})$ as $\mathcal{L}|_{x+K_1}$ is a K_1-linearized

Received by the editors February 2, 1989, and in revised form April 10, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 14H40; Secondary 14K30.
Key words and phrases. Algebraic curves, Jacobians and Picard bundles.

©1990 American Mathematical Society
0002-9939/90 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
invertible sheaf on a principal homogeneous space of K_1 (in other words $\Gamma(x + K_1, \mathcal{L}|_{x+K_1})$ is induced from the trivial one-dimensional representation of the identity subgroup of K_1).

To check that $R(x)$ is an isomorphism we will use the criterion

(1) $R(x)(t_\chi) \neq 0$ for all eigenvectors t_χ with eigenvalue a character χ of K_1.

This criterion is clear because any non-zero K_1-submodule $\text{Ker}(R(x))$ of $\Gamma(X, \mathcal{L})$ contains an eigenvector because K_1 is abelian. The next point is that up to constant multiple t_χ is determined by χ because $\Gamma(X, \mathcal{L})$ is the regular representation. Therefore we need only check a finite number of conditions for our criterion. As $t_\chi \neq 0$ it has non-zero value at most points x of X. Therefore $R(x)(t_\chi) \neq 0$ for most x and all of the finitely many χ. □

Now let \mathcal{L} be another ample invertible sheaf on X. Then we have a restriction

$$S(x) : \Gamma(X, \mathcal{L} \otimes \mathcal{M}) \to \Gamma(X + K_1, \mathcal{L} \otimes \mathcal{M}|_{x+K_1}),$$

which satisfies

Theorem 2. For all points x of X the restriction $S(x)$ is surjective.

Remark. When $\mathcal{M} = \mathcal{L}$ the result implies that $\Gamma(X, \mathcal{L} \otimes \mathcal{L})$ generates $\mathcal{L} \otimes \mathcal{L}$ which is well-known.

Remark. In some classical cases Theorem 2 is due to S. Koizumi and called by him the “rank theorem” [5,6].

Proof. Let θ be the zeroes of a section σ of \mathcal{M}. Then for fixed x

$$(\theta + y) \cap (x + K_1) = \emptyset \text{ if and only if } y \in -\theta + x + K.$$

Thus for general y, $T_y^*\mathcal{M}|_{x+K_1}$ is nowhere vanishing section of $T_y^*\mathcal{M}|_{x+K_1}$, where $T_y : X \to X$ is translation by y. Now $T_y^*\mathcal{M}$ runs through all sheaves algebraically equivalent to \mathcal{M} as \mathcal{M} is ample.

Thus we may find \mathcal{M}' and \mathcal{L}' algebraically equivalent to \mathcal{M} and \mathcal{L} such that $\mathcal{M}' \otimes \mathcal{L}' \cong \mathcal{M} \otimes \mathcal{L}$ so that the restriction $S(x) : \Gamma(X, \mathcal{M} \otimes \mathcal{L}) \to \Gamma(x + K_1, \mathcal{M} \otimes \mathcal{L}|_{x+K_1})$ is surjective if the restriction $R'(x) : \Gamma(X, \mathcal{L}') \to \Gamma(x + K_1, \mathcal{L}'|_{x+K_1})$ is surjective where \mathcal{L}' is general of its type. This follows by multiplying a section of $\Gamma(X, \mathcal{M}')$ which vanishes nowhere on $x + K_1$.

I claim the previous lemma means that $R'(x)$ is an isomorphism for general \mathcal{L}'. This claim implies the theorem from the above. For the claim take $\mathcal{L}' = T_y^*\mathcal{L}$. Then $R'(x) \approx R(x - y)$. Hence the claim follows from the lemma. □

2. Global spanning

Let $\mathcal{V}(\mathcal{L}) = \pi_X^*(\pi_X^*(\mathcal{L}) \otimes \mathcal{P})$ where \mathcal{P} is a Poincaré sheaf on $X \times \hat{X}$ where \hat{X} is the dual abelian variety. Let \mathcal{N} be an invertible sheaf on \hat{X}. We want to know when $\mathcal{V}(\mathcal{L}) \otimes \mathcal{N}$ is spanned by its global sections.
Let Y be X/K_1. As $K_1 \subset \text{Ker}(\psi_\varphi)$ we have a factorization $X \xrightarrow{\alpha} Y \xrightarrow{b} \bar{X}$ of ψ_φ. Let L be the closed subgroupscheme K/K_1 of Y. Let \mathcal{E} be the invertible sheaf on \bar{Y} gotten by descending \mathcal{L} with the K_1-action given by the homomorphism σ. We will assume that $\text{char}(k) \nmid \deg(\psi_\varphi)$.

Lemma 3. $\mathcal{V}(\mathcal{L}) \otimes \mathcal{N}$ is spanned by its global sections if and only if the restriction

$$U(y) : \Gamma(Y, \mathcal{E} \otimes b^* \mathcal{N}) \to \Gamma(y + L, \mathcal{E} \otimes b^* \mathcal{N}|_{y+L})$$

is surjective for all points y of Y.

Proof. For y in Y, $\mathcal{V}(\mathcal{L}) \otimes \mathcal{N}$ is spanned by its sections at $b(y)$ if and only if the restriction $\Gamma(X, \mathcal{V}(\mathcal{L}) \otimes \mathcal{N}) \to \mathcal{V}(\mathcal{L}) \otimes \mathcal{N}(b(y))$ is surjective if and only if the pull-back plus restriction $\mathcal{W}(y) : \Gamma(X, \mathcal{V}(\mathcal{L}) \otimes \mathcal{N}) \to (b^*(\mathcal{V}(\mathcal{L}) \otimes \mathcal{N}))(y)$ is surjective. As b is surjective, $\mathcal{V}(\mathcal{L}) \otimes \mathcal{N}$ is spanned by its global sections if and only if $\mathcal{W}(y)$ is surjective for all y in Y. Thus it will be enough to prove that $\mathcal{W}(y)$ is surjective if and only if $U(y)$ is surjective. To show this I intend to give a commutative diagram

$$U(y) : \Gamma(Y, \mathcal{E} \otimes b^* \mathcal{N}) \to \Gamma(y + L, \mathcal{E} \otimes b^* \mathcal{N}|_{y+L})$$

$$\downarrow \text{U}_A$$

$$\mathcal{W}(y) : \Gamma(X, \mathcal{V}(\mathcal{L}) \otimes \mathcal{N}) \to \mathcal{V}(\mathcal{L}) \otimes \mathcal{N}(y).$$

We need to compute the sheaf $b^*(\mathcal{V}(\mathcal{L}) \otimes \mathcal{N})$ together with its L-linearization. Let χ be a character of K_1. We have a sheaf \mathcal{E}_χ on Y gotten by descending the action of K_1 on \mathcal{L} via σ twisted by χ. Thus $\mathcal{E}_1 = \mathcal{E}$ and all of the \mathcal{E}_χ's are algebraically equivalent. The first step is

Sublemma 4. We have a natural isomorphism

$$b^*(\mathcal{V}(\mathcal{L}) \otimes \mathcal{N}) \simeq \bigoplus_{\chi \in K_1} \Gamma(Y, \mathcal{E}_\chi) \otimes_k (\mathcal{E}_\chi \otimes b^* \mathcal{N}),$$

where the spaces $\Gamma(Y, \mathcal{E}_\chi)$ are lines.

Proof. As the K_1-module $\Gamma(X, \mathcal{L})$ is the regular representation, it is the direct sum of its χ-eigenspaces $\Gamma(\chi, \mathcal{L})^\chi$ which are lines. On the other hand $\Gamma(X, \mathcal{L})^\chi = \Gamma(X/K_1, \mathcal{L}_X^\chi) = \Gamma(Y, \mathcal{E}_\chi^\chi)$. Thus the spaces are lines.

Now by [1] we have a canonical isomorphism $(\psi_\varphi)^*\mathcal{V}(\mathcal{L}) \simeq \Gamma(X, \mathcal{L}) \otimes_k \mathcal{L}_X^{\otimes -1}$ where the K_1-action (even K-action) is the obvious one. As $\psi_\varphi = b \circ a$, $b^*\mathcal{V}(\mathcal{L})$ is the sheaf of K_1-invariants in $\Gamma(X, \mathcal{L}) \otimes_k \mathcal{L}_X^{\otimes -1}$ which is $\bigoplus \Gamma(X, \mathcal{L})^\chi \otimes_k (\mathcal{L}_X^{\otimes -1})^\chi = \bigoplus \Gamma(Y, \mathcal{E}_\chi) \otimes_k \mathcal{E}_\chi^{\otimes -1}$. The sublemma results by tensoring this isomorphism with $b^*\mathcal{N}$. □

The second step gives rise to L-action under this isomorphism. For simplicity of exposition we will assume that there is another maximal subgroup K_2 of K with a section τ of α over K_2 such that $K_2 \cap K_1 = \{0\}$. By projection $\tilde{K}_2 \approx L$ and via the Weil form e_φ of \mathcal{L}, K_2 (and hence L) may be identified with
Let \(\psi(e) \) denote the character of \(K_1 \) corresponding to an element \(\ell \) of \(L \). The crucial fact is that

\[
(*) \quad \text{for any } \chi \text{ in } K_1 \text{ and } \ell \text{ in } L \text{ we have a } T_\ell \text{-isomorphism}
\]

\[
\rho(\ell, \chi): \mathcal{E}_\chi \to \mathcal{E}_{\chi \psi(\ell)} \quad \text{such that } \rho(\ell, \chi \psi(\ell_1)) \circ \rho(\ell, \chi) = \rho(\ell + \ell_2, \chi).
\]

Here the \(T_\kappa \)-isomorphism \(a^*(\rho, \chi): \mathcal{L} \to \mathcal{L} \) is just the action of the element \(\kappa \) of \(K \) over \(\ell \) on \(\mathcal{L} \) via \(\tau \). The above fact results from the study of how the \(K_2 \)-action on \(\mathcal{L} \) fails to commute with that of \(K_1 \). Thus we have isomorphism

\[
\Gamma(y, \rho(\ell, \chi)): \Gamma(Y, \mathcal{E}_\chi) \cong \Gamma(Y, \mathcal{E}_{\chi \psi(\ell)})
\]

and the \(T_\ell \)-isomorphism

\[
(\rho(-\ell, \chi \psi(\ell)) \otimes K_\ell): \mathcal{E}_\chi^{\otimes -1} \otimes b^* \mathcal{N} \to \mathcal{E}_{\chi \psi(\ell)}^{\otimes -1} \otimes b^* \mathcal{N},
\]

where \(K_\ell \) is the action of \(\ell \) on \(b^* \mathcal{N} \). Summing up without any more details we get

Sublemma 5. The \(L \)-action on \(\bigoplus \Gamma(y, \mathcal{E}_\chi) \otimes_k (\mathcal{E}_\chi^{\otimes -1} \otimes b^* \mathcal{N}) \) is the direct sum of the tensor products of the above isomorphisms.

Now \(\Gamma(\tilde{X}, \mathcal{V}(\mathcal{L}) \otimes \mathcal{N}) \) is the space of \(L \)-invariants in \(\Gamma(Y, b^*(\mathcal{V}(\mathcal{L}) \otimes \mathcal{N})) \). Thus

\[
\Gamma(\tilde{X}, \mathcal{V}(\mathcal{L}) \otimes \mathcal{N}) = (\bigoplus \Gamma(Y, \mathcal{E}_\chi) \otimes_k \Gamma(Y, \mathcal{E}_\chi^{\otimes -1} \otimes b^* \mathcal{N}))^L.
\]

Explicitly all such \(L \)-invariants are

\[
M(a) = \sum_{\ell} \Gamma(Y, \rho(\ell, 1)) \cdot d \times \Gamma(\rho(-\ell, \psi(\ell))^{\otimes -1} \otimes K_\ell) a,
\]

where \(\ell \) is a fixed non-zero element of \(\Gamma(y, \mathcal{E}) \) and \(a \) is an arbitrary element of \(\Gamma(Y, \mathcal{E}_\chi^{\otimes -1} \otimes b^* \mathcal{N}) \). The isomorphism \(A \) is just the correspondence between invariants and \(a \)’s.

Next we need to evaluate the section \(M(a) \) at a point \(y \) of \(Y \). The value of \(M(a) \) at \(y \) is an element of \(\bigoplus_{\ell} \Gamma(y, \mathcal{E}_\chi) \otimes_k (\mathcal{E}_\chi^{\otimes -1} \otimes b^* \mathcal{N})(y) \cong \bigoplus_{\ell} \Gamma(y, \mathcal{E}) \otimes_k (\mathcal{E}_\chi^{\otimes -1} \otimes b^* \mathcal{N})(y + \ell) = \Gamma(y, \mathcal{E}) \otimes \Gamma(y + \ell, \mathcal{E}^{\otimes -1} \otimes b^* \mathcal{N}|_{y + \ell}) \) under the isomorphism \(M(a)(y) \) goes to \(1 \otimes \sum_{\ell} a(y + \ell) \delta_{y+\ell} \). Using these isomorphisms we have the isomorphism \(B \) and the required commutative diagram. □

Now we are ready to put together the previous results. Let \(\mathcal{R} \) be an ample invertible sheaf on \(X \) such that \(\psi_\mathcal{R}: X \to \tilde{X} \) is an isomorphism which we will take to be an identification. Thus \(X \) is principally polarized. Assume that \(\psi_\mathcal{R} = \ell_1 \mathcal{I}_X \) and \(\psi_\mathcal{N} = \mathcal{N} \mathcal{I}_X \). Then we have \(\ell \) and \(n > 0 \) as \(\mathcal{N} \) and \(\mathcal{L} \) are ample.
Theorem 6. If \(l(n - 1) > 1 \) then \(\mathcal{V}(L) \otimes \mathcal{N} \) is generated by its sections whenever \(\text{char}(k) \nmid l \).

Proof. Choose a decomposition \(K_1 \oplus K_2 \) of \(X_\ell = \text{Ker}(\ell_1 \chi) \) by subgroups which are isotropic with respect to the Weil form of \(L \). Let \(Y = X/K_1 \). Then \(Y \) is principally polarized by \(\mathcal{O} \) where \(a * \mathcal{O} \cong L \) and \(X \rightarrow Y \rightarrow X \) is the factorization of \(\ell_1 \chi \). The classifying homomorphism \(\psi_{b,*}: Y \rightarrow Y \) is \(n/l \gamma_1 \) by an elementary calculation. Thus \(\mathcal{O} \otimes b^\ast \mathcal{N} \) is algebraically equivalent to \(\mathcal{O} \otimes b^\ast \mathcal{N} \) by Lemma 3 we need to check whether \(\Gamma(Y, \mathcal{O} \otimes b^\ast \mathcal{N}) \rightarrow \Gamma(y + L, \mathcal{O} \otimes b^\ast \mathcal{N}|_{y + L}) \) is surjective for all \(y \) in \(Y \) where \(L \) is the isomorphic image of \(K_2 \) in \(Y \).

Now \(L \) is a maximal isotopic subgroup of \(Y_\ell = \text{Ker}(\psi_\mathcal{E} \otimes \ell) \) with respect to \(e_\mathcal{E} \otimes \ell \). If \((n - 1)\ell > 1 \), \(\mathcal{O} \otimes b^\ast \mathcal{N} \otimes \mathcal{O} \otimes b^\ast \mathcal{N} \equiv \mathcal{M} \) is ample. Thus the restriction is surjective by Theorem 2. \(\square \)

3. Normal presentation for Picard bundles

We will be using the notation of Part I [4].

Theorem 7. (a) \(\mathcal{U}_n(D) \otimes \mathcal{M} \) is normally presented for \(\mathcal{R} \) if \(m \geq 3 \) and \(r \geq 4 \). If furthermore \(\text{char}(k) \nmid m \) then

(b) it is strongly normally presented and

(c) the multiplication \(\Gamma(J, \mathcal{U}_n(D) \otimes \mathcal{M}) \otimes \Gamma(J, \mathcal{R}) \rightarrow \Gamma(J, \mathcal{U}_n(D) \otimes M \otimes \mathcal{R}) \) is surjective.

Proof. The first point is that \(\mathcal{U}_n(D) \) only depends on \(\mathcal{L}_n|_C(-D) \). So choosing \(\mathcal{L}_n \) and \(D \) correctly we may assume that \(\text{char}(k) \nmid n \) and \(D \) is reduced. So by Theorem 6 \(\mathcal{U}_n \otimes \mathcal{M} \) is generated by its sections. Then we proceed as in the proof of Part I, Theorem 7. As \(\mathcal{U}_n \rightarrow \mathcal{W}_ng \) is surjective, \(\mathcal{W}_ng \otimes \mathcal{M} \) is generated by its sections. From the exact sequence

\[
0 \rightarrow \mathcal{W}_ng \otimes \mathcal{M} \rightarrow \bigoplus_{1 \leq i \leq d} \mathcal{L}_i \otimes \mathcal{M} \rightarrow \mathcal{U}_n(D) \otimes \mathcal{M} \rightarrow 0
\]

and Part I, Lemma 2 we need only see for (a) \(\mathcal{L}_i \otimes \mathcal{M} \) is strongly normally presented and for (b) \(H^1(J, \mathcal{W}_ng \otimes \mathcal{M}) = 0 \). The first statement is Part I, Theorem 6 and the second follows from [1, Theorem 3.8] when \(n > 2 \), which we may assume. This proves (a) and (b).

For (c) by the above it suffices to show that the multiplier is surjective

\[
\Gamma(J, \mathcal{L}_i \otimes \mathcal{M}) \otimes \Gamma(J, \mathcal{R}) \rightarrow \Gamma(J, \mathcal{L}_i \otimes \mathcal{M} \otimes \mathcal{R})
\]

but this follows from the Mumford-Koizumi Theorem [3]. \(\square \)

Next we compute the dimension of sections of twists of \(\mathcal{U}_n(D) \).

Theorem 8. (a) If \(m > 0 \) then \(H^i(J, \mathcal{U}_n(D) \otimes \mathcal{M}) = 0 \) if \(i > 0 \),

(b) \(\Gamma(J, \mathcal{U}_n(D) \otimes \mathcal{M}) = H^1(C, \mathcal{L}_n|_C(-D) \otimes \pi_{C*}(\pi_{C*}^\ast \mathcal{M} \otimes \mathcal{R}|_{C \times J})) \), and

(c) \(\dim \Gamma(J, \mathcal{U}_n(D) \otimes \mathcal{M}) = (d - gn + g - 1)m^g + gm^{g-1} \).
Proof. By (a) the dimension equals the Euler characteristic of $\mathcal{Z}_n(D) \otimes \mathcal{M}$, which by the Riemann-Roch Theorem is the number of points in $\text{ch}((\mathcal{Z}_n(D) \otimes \mathcal{M})$ which equals $(\text{rank} + \theta) \exp(m\theta)$. (See Theorem 8 in Part I). Thus (c) follows.

For (a) and (b) as $\mathcal{Z}_n(D) = R_{\pi_1 \ast}(\pi_1^* \mathcal{L}_n \otimes \mathcal{P}|_{C \times J}(-D \times J))$ and the other direct images are zero, we have an isomorphism $H^i(J, \mathcal{Z}_n(D) \otimes \mathcal{M}) \approx H^{i+1}(C \times J, \pi_1^* \mathcal{L}_n \otimes \mathcal{P} \otimes \pi_2^* \mathcal{M}|_{C \times J}(-D \times J))$ but as $m > 0$ the higher direct images of the last sheaf via π_C are zero [1]. Therefore

$$H^{i+1}(C \times J, \pi_1^* \mathcal{L}_n \otimes \mathcal{P} \otimes \pi_2^* \mathcal{M}|_{C \times J}(-D \times J)) = H^{i+1}(C, \mathcal{L}_n|_C(-D) \otimes \pi_1^* (\mathcal{P} \otimes \pi_2^* \mathcal{M})|_C).$$

As C is a curve the last cohomology group is zero if $i > 0$. Thus (a) and (b) follow from the two isomorphisms. □

4. RIGIDITY OF THE PICARD UNDER PULL-BACKS

As is well-known the Picard bundles $\mathcal{Z}_n(D)$ describe the fibering $f: C^{(r)} \to J$ of the symmetric product $C^{(r)}$ over the Jacobian J for $r > 2g - 2$. The rigidity of $\mathcal{Z}_n(D)$ translates into a statement about the deformations of $C^{(r)}$ [2]. In the current situation we want to study the deformations of a variety X where $X = C^{(r)} \times_J A$ for an isogeny $f: A \to J$ of degree prime to the characteristic. Thus X is an abelian unramified covering of $C^{(r)}$ of degree prime to $\text{char}(k)$.

Theorem 9. If $r > 3$ and C has general moduli then any deformation of X is induced by a deformation of C and a deformation of the isogeny f.

We will prove this theorem later. Let $\text{Pic}^0(Y)$ be the connected component of the Picard scheme of a variety Y. We will begin by proving

Theorem 10. The natural mapping $\text{Pic}^0(C^{(r)}) \to \text{Pic}^0(X)$ is an isogeny of abelian varieties if $r > 1$.

Proof. First recall that $\text{Pic}^0(C^{(r)})$ is isomorphic to the Jacobian J. A key fact is that for any two morphisms g and $h: S \to J$, $(g + f)^* : \text{Pic}^0(J) \to \text{Pic}^0(S)$ is the product $g^* \otimes f^*$ (this is the theorem of the square). To use this fact look at $\text{Pic}^0(J) \to \text{Pic}(C^{(r)})^i \to \text{Pic}^0(C^{(r)}).$ Then the composition sends $[\mathcal{L}]$ to $[\otimes_i \pi_i^* (\mathcal{L}^r)|_C]$. By autoduality of the Jacobian $\text{Pic}^0(J) \approx \text{Pic}^0(C) \approx J$. Thus the composition is $J \to \text{Pic}^0(C^{(r)}) \to J$. By the fixed point argument [2, Lemma 1.3] with $G = G_m$ pull-back gives an inclusion $H^1(C^{(r)}, \mathcal{O}_{C^{(r)}}) \hookrightarrow H^1(C^{(r)}, \mathcal{O}_{C^{(r)}}^{\text{Sym}(r)}).$ Thus i is an inclusion and hence an isomorphism with $J = (C^{(r)})^{\text{Sym}(r)}$ (set-theoretically). To remove this qualification we use the argument when $G = G_a$. Hence $H^1(C^{(r)}, \mathcal{O}_{C^{(r)}}) \hookrightarrow (H^1(C^{(r)}, \mathcal{O}_{C^{(r)}}^{\text{Sym}(r)})$ is injective and, hence, $\text{Pic}^0(C^{(r)}) \approx J$ because we have an isomorphism on tangent spaces.
We next apply the fixed point argument to the covering \(Y = C^{x r} \times_{C^n} X \rightarrow X \) of \(X \) with Galois group \(\text{Sym}(r) \). Then we get an injection \(\text{Pic}^0(Y) \hookrightarrow \text{Pic}^0(X)^{\text{Sym}(r)} \). We need to see that the composition \(H^1(C^{x r}, \mathcal{O}_{C^{x r}}^\chi) \rightarrow H^1(Y, \mathcal{O}_Y)^{\text{Sym}(r)} \) is an isomorphism, or, rather, \(H^1(C^{x r}, \mathcal{O}_{C^{x r}}^{\chi}) \rightarrow H^1(Y, \mathcal{O}_Y)^{\text{Sym}(r)} \) is an isomorphism. Better yet we have

Claim. \(H^1(C^{x r}, \mathcal{O}_{C^{x r}}) \rightarrow H^1(Y, \mathcal{O}_Y) \) is an isomorphism.

This uses Kummer theory. Let \(K \) be the kernel of \(f: A \rightarrow J \). Then for each character \(\chi \) of \(K \) we have an invertible sheaf \(\mathcal{O}_{C}^\chi \) on \(J \) gotten by descending the translation action of \(K \) on \(\mathcal{O}_A \) by \(\chi \). Then \(\mathcal{O}_A^\chi \) is contained in \(\text{Pic}^0(J) \). For any morphism \(k: S \rightarrow J \) we define \(\mathcal{O}_S^\chi \) to be \(k^* \mathcal{O}_A^\chi \). Then by the above key fact \(\mathcal{O}_{C^{x r}}^\chi \) is contained in \(\text{Pic}^0(X) \). Hence by the Künneth formula, if \(\chi \neq 1 \), \(H^1(C^{x r}, \mathcal{O}_{C^{x r}}^\chi) = 0 \) as \(r > 1 \) and \(H^0(C, \mathcal{O}_C^\chi) = 0 \) because \(\mathcal{O}_C^\chi \) has degree zero and is not trivial. Now \(\alpha^* \mathcal{O}_Y = \bigoplus \mathcal{O}_{C^{x r}}^\chi \) where \(\alpha: Y \rightarrow C^{x r} \) is the projection. Thus \(H^1(Y, \mathcal{O}_Y) = \bigoplus \mathcal{O}_{C^{x r}}^\chi \) is an isomorphism. This proves the claim.

I checked that the mapping of Theorem 10 is just \(f^+ \): \(J^+ \rightarrow A^+ \).

What we will need is the same fact for \(\alpha': X \rightarrow C^{(r)} \).

Corollary 11. If \(\chi \neq 1 \), then \(H^1(C^{(r)}, \mathcal{O}_{C^{(r)}}^\chi) = 0 \) if \(r > 1 \) and \(H^0(C^{(r)}, \mathcal{O}_{C^{(r)}}) = 0 \) if \(r \geq 1 \).

Proof. The second fact is a consequence of \(\mathcal{O}_{C^{(r)}}^\chi \) being non-trivial but numerically trivial.

Now we can start the

Proof of Theorem 9. We need to compute \(H^1(X, \theta_X^r) \). Now \(\sigma^r \theta_X^r \approx \theta_{C^{(r)}} \otimes \mathcal{O}_X^\chi = \theta_{C^{(r)}} \otimes \bigoplus \mathcal{O}_{C^{(r)}}^\chi \). Thus we have a decomposition \(H^1(X, \theta_X^r) = \bigoplus H^1(C^{(r)}, \theta_{C^{(r)}} \otimes \mathcal{O}_{C^{(r)}}^\chi) \). We need to see that

\[
\text{(A) if } \chi \neq 1 \text{ then } H^1(C^{(r)}, \theta_{C^{(r)}} \otimes \mathcal{O}_{C^{(r)}}^\chi) = 0
\]

because the theorem will follow from \(A \) by deformation theory.

We will use the method of [2]. Let \(D_r \) be the universal divisor on \(C \times C^{(r)} \). Then \(\theta_{C^{(r)}} = \tau_* (\mathcal{O}_{C^{(r)}} (D_r) \mid D_r) \) where \(\tau_r: D_r \rightarrow C^{(r)} \) is the projection. Thus \(H^1(C^{(r)}, \theta_{C^{(r)}} \otimes \mathcal{O}_{C^{(r)}}^\chi) \approx H^1(D_r, \mathcal{O}_{C^{(r)}} (D_r) \otimes \mathcal{O}_{C^{(r)}}^\chi) \). The first point is

Claim. If \(r > 2 \) and \(n \geq 0 \) then

\[
H^1(D_r, \pi_* ((\theta_C \otimes \mathcal{O}_C^\chi)^{\otimes n})(D_r) \mid D_r) \otimes \mathcal{O}_{C^{(r)}}^\chi
\]

\[
\cong H^1(D_{r-1}, \pi_* ((\theta_C \otimes \mathcal{O}_C^\chi)^{\otimes n+1})(D_{r-1}) \mid D_{r-1}) \otimes \mathcal{O}_{C^{(r-1)}}^\chi
\]
Proof of claim. We have an isomorphism
\[\alpha_r : C \times C^{(r-1)} \xrightarrow{\cong} D_r \]
where
\[\alpha_r^* \mathcal{O}_{C \times C^{(r)}}(D_r)|_{D_r} \simeq \pi_C^* \theta_C(D_{r-1}) \]
and
\[\alpha_r^* \tau_r^* \mathcal{O}_{C^{(r)}}(\chi) = \pi_C^* \mathcal{O}_C(\chi) \otimes \pi_{C^{(r-1)}}^* \mathcal{O}_{C^{(r-1)}}(\chi). \]
Thus
\[\pi_C^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes n)(D_r)|_{D_r} \otimes \tau_r^* \mathcal{O}_{C^{(r)}}(\chi) \]
corresponds via \(\alpha_r \) to the sheaf
\[\left(\pi_C^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes n+1) \otimes \pi_{C^{(r-1)}}^* \mathcal{O}_{C^{(r-1)}}(\chi) \right)(D_{r-1}). \]
Using the sequence
\[0 \to \mathcal{O}_{C \times C^{(r-1)}} \to \mathcal{O}_{C \times C^{(r-1)}}(D_{r-1}) \to \mathcal{O}_{C \times C^{(r-1)}}(D_{r-1})|_{D_{r-1}} \to 0 \]
tensored by
\[\left(\pi_C^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes n+1) \otimes \pi_{C^{(r-1)}}^* \mathcal{O}_{C^{(r-1)}}(\chi) \right), \]
we see that
\[H^i(C \times C^{(r-1)}, \pi_C^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes n+1) \otimes \pi_{C^{(r-1)}}^* \mathcal{O}_{C^{(r-1)}}(\chi))(D_{r-1})) \]
\[\cong H^i(D_{r-1}, \pi_C^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes n+1)(D_{r-1})|_{D_{r-1}} \otimes \tau_r^* \mathcal{O}_{C^{(r-1)}}(\chi)) \]
because
\[H^i(C \times C^{(r-1)}, \pi_C^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes n+1) \otimes \pi_{C^{(r-1)}}^* \mathcal{O}_{C^{(r-1)}}(\chi) \]
is zero for \(i \leq 2 \). This vanishing follows from the Künneth formula from
\[H^0(C, (\theta_C \otimes \mathcal{O}_C(\chi)))^\otimes n+1 = 0 \]
as the degree of the sheaf \(< 0 \) for \(g > 2 \) and
\[H^i(C^{(r-1)}, \mathcal{O}_{C^{(r-1)}}(\chi)) = 0 \]
for \(0 \leq i \leq 1 \) by Corollary 11. \(\square \)

Using the claim inductively we have an isomorphism
\[H^1(C^{(r)}, \theta_{C^{(r)}} \otimes \mathcal{O}_{C^{(r)}}(\chi)) \]
\[\cong H^1(D_2, \pi_1^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes (r-2))(D_2)|_{D_2} \otimes \tau_2^* \mathcal{O}_{C^{(2)}}(\chi)) \]
which by the first step of the claim is isomorphic to
\[H^1(C \times C, (\pi_1^*((\theta_C \otimes \mathcal{O}_C(\chi))^\otimes (r-1)) \otimes \pi_1^* \mathcal{O}_C(\chi))(\Delta)). \]
By duality on the surface \(C \times C \) this group is dual to the cokernel of multiplication
\[m_r(\chi) : \Gamma(C, \Omega_C^{\otimes r} \otimes \mathcal{O}_C(\chi^{-1})) \otimes \Gamma(C, \Omega_C \otimes \mathcal{O}_C(\chi^{-1})) \to \Gamma(C, \Omega_C^{\otimes r+1} \otimes \mathcal{O}_C(\chi^{-r})). \]
Thus we need to have \(m_r(\chi) \) surjective.
We first need to have \(\Gamma(C, \Omega_c \otimes \mathcal{O}_c(\chi^{-1})) \) has no base points; i.e. \(\mathcal{O}_c(\chi^{-1}) \not\cong \mathcal{O}_c(c_1 - c_2) \) for two points \(c_1 \) and \(c_2 \) on \(C \). Otherwise \(\mathcal{O}_c = (\mathcal{O}_c(\chi))^{\deg f} = \mathcal{O}_c(\deg f \cdot c_1 - \deg f \cdot c_2) \). Therefore there is a morphism \(G: C \rightarrow \mathbb{P}^n \) of \(\deg = \deg f \) with only one point over both 0 and \(\infty \). By Riemann-Hurwitz formula \(G \) has \(2g \) other ramification points. Normalizing one to be over 1, \(G \) depends on \(2g - 1 \) parameters, but \(2g - 1 < 3g - 3 = \dim(\text{Moduli}) \) as \(g > 2 \). Thus we have no base points for a general curve. By \(r > 3(\Omega_c^r \otimes \mathcal{O}_c(\chi^{-r+1})) \otimes (\Omega_c \otimes \mathcal{O}_c(\chi^{-1})) \) is not special \((g > 1) \). Thus for general \(C \) the surjectivity of \(m_r(\chi) \) follows from the original Castelnuovo lemma. \(\square \)

Remark. X. Gomezmont has extended the results of [2] to all curves of genus \(> 2 \).

References