Finite simple abelian algebras are strictly simple
HTML articles powered by AMS MathViewer
- by Matthew A. Valeriote PDF
- Proc. Amer. Math. Soc. 108 (1990), 49-57 Request permission
Abstract:
A finite universal algebra is called strictly simple if it is simple and has no nontrivial subalgebras. An algebra is said to be Abelian if for every term $t(x,\bar y)$ and for all elements $a,b,\bar c,\bar d$, we have the following implication: $t(a,\bar c) = t(a,\bar d) \to t(b,\bar c) = t(b,\bar d)$. It is shown that every finite simple Abelian universal algebra is strictly simple. This generalizes a well-known fact about Abelian groups and modules.References
- Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR 648287
- B. Čakan′, Abelian properties of primitive classes of universal algebras, Acta Sci. Math. (Szeged) 25 (1964), 202–208 (Russian). MR 169805
- Ralph Freese and Ralph McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, vol. 125, Cambridge University Press, Cambridge, 1987. MR 909290
- David Hobby and Ralph McKenzie, The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR 958685, DOI 10.1090/conm/076
- E. Kiss and M. Valeriote, Strongly abelian varieties and the Hamiltonian property, Canad. J. Math. 43 (1991), no. 2, 331–346. MR 1113758, DOI 10.4153/CJM-1991-019-6
- Ralph McKenzie, Finite forbidden lattices, Universal algebra and lattice theory (Puebla, 1982) Lecture Notes in Math., vol. 1004, Springer, Berlin, 1983, pp. 176–205. MR 716183, DOI 10.1007/BFb0063438 —, Congruence extension, Hamiltonian and Abelian properties in locally finite varieties (preprint), 1989.
- Ralph McKenzie and Matthew Valeriote, The structure of decidable locally finite varieties, Progress in Mathematics, vol. 79, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 1033992, DOI 10.1007/978-1-4612-4552-0
- P. P. Pálfy, Unary polynomials in algebras. I, Algebra Universalis 18 (1984), no. 3, 262–273. MR 745492, DOI 10.1007/BF01203365
- Péter Pál Pálfy and Pavel Pudlák, Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups, Algebra Universalis 11 (1980), no. 1, 22–27. MR 593011, DOI 10.1007/BF02483080
- Kenjiro Shoda, Zur Theorie der algebraischen Erweiterungen, Osaka Math. J. 4 (1952), 133–143 (German). MR 52403
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 49-57
- MSC: Primary 08A30; Secondary 03C05
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990434-2
- MathSciNet review: 990434