Yet another proof of the Lyapunov convexity theorem
HTML articles powered by AMS MathViewer
- by Zvi Artstein PDF
- Proc. Amer. Math. Soc. 108 (1990), 89-91 Request permission
Abstract:
A new proof is given, of the convexity and compactness of the range of an atomless ${R^n}$-valued measure.References
- Marc De Wilde, Sur un théorème de Lyapounov, Bull. Soc. Roy. Sci. Liège 38 (1969), 96–100 (French, with English summary). MR 245747
- Hubert Halkin, Some further generalizations of a theorem of Lyapounov, Arch. Rational Mech. Anal. 17 (1964), 272–277. MR 174421, DOI 10.1007/BF00282290
- Paul R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416–421. MR 24963, DOI 10.1090/S0002-9904-1948-09020-6
- Shozo Koshi, A remark on Lyapunov-Halmos-Blackwell’s convexity theorem, Math. J. Okayama Univ. 14 (1969/70), 29–33. MR 265552
- A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465–478 (Russian, with French summary). MR 0004080
- Joram Lindenstrauss, A short proof of Liapounoff’s convexity theorem, J. Math. Mech. 15 (1966), 971–972. MR 0207941
- Czesław Olech, On the range of an unbounded vector-valued measure, Math. Systems Theory 2 (1968), 251–256. MR 239040, DOI 10.1007/BF01694009
- James A. Yorke, Another proof of the Liapunov convexity theorem, SIAM J. Control 9 (1971), 351–353. MR 0302263
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 89-91
- MSC: Primary 28A12; Secondary 28A35
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993737-0
- MathSciNet review: 993737