YET ANOTHER PROOF OF
THE LYAPUNOV CONVEXITY THEOREM

ZVI ARTSTEIN

(Communicated by R. Daniel Mauldin)

Abstract. A new proof is given, of the convexity and compactness of the range of an atomless R^n-valued measure.

Several proofs are available for the theorem of A. A. Lyapunov on the range of a vector measure. (The bibliography given here is not exhaustive.) These proofs reflect both the applicability and the value of the theorem. This paper presents yet another proof, one based on a new, useful argument.

The measure theory we use is standard. Let (Ω, Σ) be a measurable space, and let $\mu = (\mu_1, \ldots, \mu_n)$ be an atomless R^n-valued σ-additive finite measure on it. The range of the restriction of μ to a set T in Σ is

$$R(T) = \{\mu(A) : A \subset T, A \in \Sigma\}.$$

We denote by $|\mu|$ the scalar measure of total variation of μ. From here on we identify sets which differ by only a set of $|\mu|$-measure zero. Thus $T_1 \subset T_2$ means that $|\mu|(T_1 \setminus T_2) = 0$. We denote by chK the closed convex hull of the set $K \subset R^n$. With this notation the Lyapunov theorem reads $chR(\Omega) = R(\Omega)$.

We arrive at it as the conclusion of the following result.

Theorem. Let x be in $chR(\Omega)$. Consider the subclass Σ^1 of Σ, consisting of those $T \in \Sigma$ such that $x \in chR(T)$. Then Σ^1 contains a minimal set, say S, with respect to inclusion (minimal up to $|\mu|$-null set). For the minimal set S we have $\mu(S) = x$. In particular $x \in R(\Omega)$, and the latter is therefore closed and convex.

We use the following result.

Lemma. Let $T = \bigcap_{i=1}^\infty T_i$, where $T_1 \supset T_2 \supset \cdots$ is a decreasing sequence in Σ. Then $chR(T) = \bigcap_{i=1}^\infty chR(T_i)$.

Proof. The inclusion of $ch(R(T))$ in the intersection is trivial. To verify the other direction, and since all the sets are compact, it suffices to prove that if $y_i \in chR(T_i)$ then the distance between y_i and $ch(R(T))$ tends to zero as

Received by the editors May 24, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 28B05.
Since the closure and taking convex hull operations do not increase the distance from the convex set \(chR(T) \), it is enough to verify the claim for \(y_i \in R(T_i) \), namely when \(y_i = \mu(A_i) \) for \(A_i \subset T_i \). In particular \(y_i = \mu(A_i \cap T) + \mu(A_i \setminus T) \). The first term belongs to \(R(T) \); the second term is bounded in norm by \(|\mu|(T \setminus T) \). The latter sequence converges to zero (an elementary fact of scalar measures, implied by the \(\sigma \)-additivity); hence the vectors \(y_i - \mu(A_i \cap T) \) tend to zero and this verifies the claim.

Proof of the existence of a minimal element in \(\Sigma^1 \). Let \(T_\gamma \), \(\gamma \in \Gamma \), be a decreasing family, not necessarily countable, of sets in \(\Sigma^1 \). We claim that a cofinal subsequence \(T_{\gamma_i} \), \(i = 1, 2, \ldots \), exists; namely, each \(T_{\gamma_i} \) contains an element of the sequence. To show this, consider the numbers \(|\mu|(T_{\gamma_i}) \), \(\gamma \in \Gamma \), and choose a sequence \(|\mu|(T_{\gamma_i}) \) among these numbers such that each \(|\mu|(T_{\gamma_i}) \) is greater than or equal to one of the elements in the sequence; \(T_{\gamma_i} \) is then cofinal. Clearly, \(T = \bigcap_{i=1}^{\infty} T_{\gamma_i} \) is included (up to \(|\mu| \)-null sets) in each \(T_\gamma \). By the lemma, if each \(T_{\gamma_i} \) belongs to \(\Sigma^1 \), then \(T \in \Sigma^1 \); i.e. \(T_\gamma \), \(\gamma \in \Gamma \), has a lower bound in \(\Sigma^1 \). By the Zorn lemma a minimal element exists.

Some notations. Let \(p \cdot x \) denote the scalar product of \(p \) and \(x \) in \(R^n \). If \(K \subset R^n \) and \(p \in R^n \), then \(K_p \) is the \(p \)-boundary of \(K \); namely \(K_p = \{ y \in K : p \cdot y \geq p \cdot z \text{ for all } z \in K \} \). For \(K \subset R^n \) and \(y \in R^n \), we write \(y + K \) for \(\{ y + z : z \in K \} \). We fix \(p \in R^n \). Note that the set function \(p \cdot \mu \), defined by \((p \cdot \mu)(A) = p \cdot \mu(A) \), is a \(\sigma \)-additive signed measure. For \(T \in \Sigma \) we denote by \(T_+ \), \(T_- \), and \(T_0 \) the decomposition of \(T \) into sets, such that \(p \cdot \mu \) is nonnegative on subsets of \(T_+ \) and nonpositive on subsets of \(T_- \), and such that \(|p \cdot \mu| \) vanishes on subsets of \(T_0 \) and \(T_0 \) is maximal in the sense that \(|p \cdot \mu|(A) = 0 \) then \(|\mu|(A \setminus T_0) = 0 \) (namely \(|\mu| \) is absolutely continuous with respect to \(p \cdot \mu \) on \(T_+ \cup T_- \)). It is easy to construct this decomposition (e.g. if \(f(w) \) is the Radon-Nikodym derivative of \(\mu \) with respect to \(|\mu| \), then \(T_+ = \{ w \in T : p \cdot f(w) > 0 \} \), etc.).

Proposition. Let \(T \in \Sigma \). Then \((chR(T))_p = \mu(T_+) + chR(T_0) \).

Proof. The inclusion \(\mu(T_+) + chR(T_0) \) in the \(p \)-boundary of \(chR(T) \) is trivial. To verify the other direction, let \(y \in (chR(T))_p \); we have to show that \(y \in \mu(T_+) + chR(T_0) \). Since for bounded sets the closure operation and taking convex-hull operation commute, it is enough to verify the inclusion for \(y \) in the closure of \(R(T) \); namely when \(y = \lim \mu(T_j) \) and \(T_j \subset T \). We claim that for \(|\mu|(T_+ \setminus T_j) \) and \(|\mu|(T_- \cap T_j) \), both converge to zero as \(j \to \infty \). This follows immediately from the convergence of \(p \cdot \mu(T_j) \) to \(p \cdot y = \max \{ p \cdot z : z \in chR(T) \} \), and the splitting of \(T \) into the positive, negative, and neutral parts with respect to \(p \cdot \mu \). Once the convergence to zero of \(|\mu|(T_- \cap T_j) \) and \(|\mu|(T_+ \setminus T_j) \) is established, we notice that \(y \) is also the limit of \(\mu(T_+) + \mu(T_0 \cap T_j) \). The latter sequence is in \(\mu(T_+) + chR(T_0) \), and this is what we have to show.
ANOTHER PROOF OF THE LYAPUNOV CONVEXITY THEOREM

Proof of the equality \(x = \mu(S) \).

Case 1. \(x \) is in the relative interior of \(chR(S) \). Since the latter contains the zero vector, it follows that \(x \) would also be in \(chR(S^1) \) if \(|\mu|(S\setminus S^1) \) is small enough. Such an \(S^1 \) with \(|\mu|(S\setminus S^1) > 0 \) is easily constructed by the lack of atoms of \(|\mu| \). This contradicts the minimality of \(S \); thus \(x \) cannot be in the relative interior of \(chR(S) \).

Case 2. \(x \) is in the relative boundary of \(chR(S) \). Then a \(p \in \mathbb{R}^n \) exists with \(x \in (chR(S))_p \) and \(p \cdot x > p \cdot y \) for some \(y \in R(S) \). By the proposition, \(x - \mu(S_+) \in chR(S_0) \), where \(S_+ \) and \(S_0 \) are defined with respect to \(p \). Clearly \(S_0 \) is a minimal set with this property; otherwise minimality of \(S \) is contradicted. The linear dimensionality of \(chR(S_0) \) is smaller than that of \(chR(S) \); thus an induction argument (or repeating the argument \(n - 1 \) times) completes the proof.

Bibliography

DEPARTMENT OF THEORETICAL MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL