An easy example of a $0$-space not almost rimcompact
HTML articles powered by AMS MathViewer
- by Beverly Diamond PDF
- Proc. Amer. Math. Soc. 108 (1990), 255-256 Request permission
Abstract:
We construct an easy example of a space $X$ which is not almost rimcompact but for which $\beta X\backslash X$ is strongly $0$-dimensional.References
- Beverly Diamond, Almost rimcompact spaces, Topology Appl. 25 (1987), no. 1, 81–91. MR 874980, DOI 10.1016/0166-8641(87)90077-0
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
- Jun Terasawa, Spaces $\textbf {N}\cup {\cal R}$ and their dimensions, Topology Appl. 11 (1980), no. 1, 93–102. MR 550876, DOI 10.1016/0166-8641(80)90020-6
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 255-256
- MSC: Primary 54D40; Secondary 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993748-5
- MathSciNet review: 993748