AN EASY EXAMPLE OF A 0-SPACE NOT ALMOST RIMCOMPACT

BEVERLY DIAMOND

(Communicated by Dennis Burke)

Abstract. We construct an easy example of a space X which is not almost rimcompact but for which $\beta X \setminus X$ is strongly 0-dimensional.

Recall that a space X is rimcompact if X possesses a base of open sets with compact boundaries, and almost rimcompact if X has a compactification KX in which points of $KX \setminus X$ have a base of open sets of KX whose boundaries lie in X. Any rimcompact space is almost rimcompact (see, for example, VI, example 30, of [Is]); and any almost rimcompact space is clearly a 0-space, that is, has a compactification with 0-dimensional remainder. In VI, example 7, of [Is], Isbell indicates a construction involving the product of a 0-dimensional space and an ordinal space which yields an almost rimcompact space that is not rimcompact. Using different techniques, he goes on to produce a much more complicated example of a space X which is not rimcompact (or even almost rimcompact), but has a compactification KX with $KX \setminus X$ strongly 0-dimensional (that is, $\dim(KX \setminus X) = 0$). We show that a straightforward use of the easier construction can be used to produce a space X having the latter properties and with $KX = \beta X$.

Let \mathcal{R} denote a maximal almost disjoint collection of infinite subsets of the natural numbers N. The space $N \cup \mathcal{R}$ has the topology described in 51 of [GJ]; each point of N is isolated, and $\lambda \in \mathcal{R}$ has an open base $\{\{\lambda\} \cup (\lambda \setminus F) : F$ is a finite subset of $N\}$. The space $N \cup \mathcal{R}$ is locally compact, pseudocompact, and 0-dimensional. According to 2.1 and the concluding remarks of [Te], given any first-countable separable compact Hausdorff space T, there is a family \mathcal{R} so that $\beta(N \cup \mathcal{R}) \setminus (N \cup \mathcal{R})$ is homeomorphic to T. If we choose T to be the unit interval I, then $N \cup \mathcal{R}$ is not strongly 0-dimensional, and $N \cup \mathcal{R} \cup \{0\}$ is totally disconnected but not 0-dimensional. The subspace \mathcal{R} is discrete, so that the space $\mathcal{R} \cup \{0\}$ has only one nonisolated point; hence $\dim(\mathcal{R} \cup \{0\}) = 0$. The point 0 does not have an open neighborhood U in $\beta(N \cup \mathcal{R})$ with $\frac{1}{2} \notin U$ and $\bd_{\beta(N \cup \mathcal{R})} U \cap \mathcal{R} = \emptyset$, for if such a U exists, then $[\bd_{\beta(N \cup \mathcal{R})} U] \cap (N \cup \mathcal{R}) = \emptyset$, since points of N are isolated in $\beta(N \cup \mathcal{R})$.

Received by the editors February 1, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 54D40, 54G20.

©1990 American Mathematical Society
0002-9939/90 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
That is, \(U \cap (N \cup R) \) is open and closed in \(N \cup R \), and \(\text{cl}_{\beta(N \cup R)}[U \cap (N \cup R)] \) disconnects \(\beta(N \cup R) \setminus (N \cup R) \), a contradiction.

Let \(Y = \beta(N \cup R) \times (\omega_1 + 1) \), and \(X = Y \setminus [(R \cup \{0\}) \times \{\omega_1\}] \). It follows from Theorems 1 and 4 of [Gl] and 6.7 of [GJ] that \(\beta X = Y \). According to 2.8 of [Di], if \(X \) is almost rimcompact and \(\beta X \setminus X \) is 0-dimensional, points of \(\beta X \setminus X \) have bases in \(\beta X \) of open sets with boundaries in \(X \). The point \((0, \omega_1)\) does not have such a base, since the intersections of such sets with \(\beta(N \cup R) \times \{\omega_1\} \) would constitute a base for \((0, \omega_1)\) in \(\beta(N \cup R) \times \{\omega_1\} \) which cannot exist. Then the space \(X \) has the desired properties.

Acknowledgment

The author wishes to thank the American Association of University Women for financial support.

References

