Mixed and directional derivatives
HTML articles powered by AMS MathViewer
- by W. Chen and Z. Ditzian PDF
- Proc. Amer. Math. Soc. 108 (1990), 177-185 Request permission
Abstract:
The estimate \[ \left \| {\frac {{{\partial ^k}f\left ( x \right )}}{{\partial {\xi _1} \cdots \partial {\xi _k}}}} \right \| \leq {\sup _\xi }\left \| {\frac {{{\partial ^k}f\left ( x \right )}}{{\partial {\xi ^k}}}} \right \|\] is proved for various spaces of functions over domains in ${R^d}$ , where $\partial f / \partial {\xi _i}$ is the directional derivative of $f$ in the ${\xi _i}$, direction and ${\xi _1}, \ldots ,{\xi _k}$ are any $k$ directions.References
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Z. Ditzian, Multivariate Landau-Kolmogorov-type inequality, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 335–350. MR 974990, DOI 10.1017/S0305004100067839
- Robert C. Sharpley, Cone conditions and the modulus of continuity, Second Edmonton conference on approximation theory (Edmonton, Alta., 1982) CMS Conf. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 1983, pp. 341–351. MR 729339
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 177-185
- MSC: Primary 26D10; Secondary 41A44
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994773-0
- MathSciNet review: 994773