Dieudonné-Schwartz theorem in inductive limits of metrizable spaces. II
HTML articles powered by AMS MathViewer
- by Jing Hui Qiu
- Proc. Amer. Math. Soc. 108 (1990), 171-175
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994779-1
- PDF | Request permission
Abstract:
The Dieudonné-Schwartz Theorem for bounded sets in strict inductive limits does not hold for general inductive limits $E = {\text {ind lim }}{E_n}$ . It does if all the ${E_n}$ are Fréchet spaces and for any $n \in N$ there is $m\left ( n \right ) \in N$ such that $\bar E_n^{{E_p}} \subset {E_{m\left ( n \right )}}$ for all $p \geq m\left ( n \right )$. A counterexample shows that this condition is not necessary. When $E$ is a strict inductive limit of metrizable spaces ${E_n}$ , this condition is equivalent to the condition that each bounded set in $E$ is contained and bounded in some $\left ( {{E_n},{\xi _n}} \right )$. Also, some interesting results for bounded sets in inductive limits of Fréchet spaces are given.References
- J. Horváth, Topological vector spaces and distributions, Vol. 1, Addison-Wesley, Reading, Massachusetts, 1966.
- J. Kučera and K. McKennon, Bounded sets in inductive limits, Proc. Amer. Math. Soc. 69 (1978), no. 1, 62–64. MR 463937, DOI 10.1090/S0002-9939-1978-0463937-1
- J. Kučera and K. McKennon, Dieudonné-Schwartz theorem on bounded sets in inductive limits, Proc. Amer. Math. Soc. 78 (1980), no. 3, 366–368. MR 553378, DOI 10.1090/S0002-9939-1980-0553378-X
- J. Kučera and C. Bosch, Dieudonné-Schwartz theorem on bounded sets in inductive limits. II, Proc. Amer. Math. Soc. 86 (1982), no. 3, 392–394. MR 671201, DOI 10.1090/S0002-9939-1982-0671201-1
- Jing Hui Qiu, Dieudonné-Schwartz theorem in inductive limits of metrizable spaces, Proc. Amer. Math. Soc. 92 (1984), no. 2, 255–257. MR 754714, DOI 10.1090/S0002-9939-1984-0754714-5
- A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 53, Cambridge University Press, New York, 1964. MR 0162118 G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, Heidelberg, New York, 1983.
- Albert Wilansky, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978. MR 518316
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 171-175
- MSC: Primary 46A05
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994779-1
- MathSciNet review: 994779