A note on Fréchet-Montel spaces
HTML articles powered by AMS MathViewer
- by Mikael Lindström PDF
- Proc. Amer. Math. Soc. 108 (1990), 191-196 Request permission
Abstract:
Let $E$ be a Fréchet space and let ${C^b}\left ( E \right )$ denote the vector space of all bounded continuous functions on $E$. It is shown that the following statements are equivalent: (i) $E$ is Montel. (ii) Every bounded continuous function from $E$ into ${c_0}$ maps every absolutely convex closed bounded subset of $E$ into a relatively compact subset ${c_0}$. (iii) Every sequence in ${C^b}\left ( E \right )$ that converges to zero in the compact-open topology also converges uniformly to zero on absolutely convex closed bounded subsets of $E$.References
- Jean Bourgain and Joe Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58. MR 774176, DOI 10.1002/mana.19841190105
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116
- Francisco J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), no. 4, 479–486. MR 742894, DOI 10.1007/BF01455966
- A. García and J. Gómez, Dunford-Pettis property, Arch. Math. (Basel) 49 (1987), no. 4, 326–332. MR 913164, DOI 10.1007/BF01210717
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257
- Heinz Junek, Locally convex spaces and operator ideals, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 56, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1983. With German, French and Russian summaries. MR 758254
- Mikael Lindström, A characterization of Schwartz spaces, Math. Z. 198 (1988), no. 3, 423–430. MR 946613, DOI 10.1007/BF01184675
- Mikael Lindström and Thomas Schlumprecht, On limitedness in locally convex spaces, Arch. Math. (Basel) 53 (1989), no. 1, 65–74. MR 1005171, DOI 10.1007/BF01194874
- T. Terzioğlu, On Schwartz spaces, Math. Ann. 182 (1969), 236–242. MR 247417, DOI 10.1007/BF01350326
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 191-196
- MSC: Primary 46A14; Secondary 46A06
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994780-8
- MathSciNet review: 994780