On a problem of G. G. Lorentz regarding the norms of Fourier projections
HTML articles powered by AMS MathViewer
- by Boris Shekhtman PDF
- Proc. Amer. Math. Soc. 108 (1990), 187-190 Request permission
Abstract:
For any $0 < \alpha < \frac {1}{2}$ we construct a sequence of integers $\left ( {{\mu _1}, \ldots , {\mu _n}, \ldots } \right )$ such that the norms of Fourier projections \[ {F_N} = \sum \limits _1^N {{e^{i{\mu _j}\theta }}} \otimes {e^{i{\mu _{{j^t}}}}}:{C_{\left [ { - \pi ,\pi } \right ]}} \to {C_{\left [ { - \pi ,\pi } \right ]}}\] grow as ${N^\alpha }$ . This answers a question of Prof. G. G. Lorentz.References
- Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606
- O. Carruth McGehee, Louis Pigno, and Brent Smith, Hardy’s inequality and the Littlewood conjecture, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 1, 71–72. MR 614316, DOI 10.1090/S0273-0979-1981-14925-9
- Boris Shekhtman, On the norms of some projections, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985, pp. 177–185. MR 827771, DOI 10.1007/BFb0074705
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 187-190
- MSC: Primary 42A05; Secondary 42A45, 43A25
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994788-2
- MathSciNet review: 994788